
Advance Information **POWER OPTO™ Isolator** 2 Amp Random-Phase Triac Output

This device consists of a gallium arsenide infrared emitting diode optically coupled to a random phase triac driver circuit and a power triac. It is capable of driving a load of up to 2 amps (rms) directly, on line voltages from 20 to 280 volts AC (rms).

- · Provides Normally Open Solid State AC Output with 2 Amp Rating
- 70 Amp Single Cycle Surge Capability
- Phase Controllable
- High Input-Output Isolation of 3750 vac (rms)
- Static dv/dt Rating of 400 Volts/μs Guaranteed
- 2 Amp Pilot Duty Rating Per UL508 ¶117 (Overload Test) and ¶118 (Endurance Test) ¹ [File No. 129224]
- CSA Approved [File No. CA77170-1]. VDE Approval in Process.
- Exceeds NEMA 2-230 and IEEE472 Noise Immunity Test Requirements (See Figure 17)

DEVICE RATINGS (T_A = 25° C unless otherwise noted)

Rating	Symbol	Value	Unit
INPUT LED			•
Forward Current — Maximum Continuous	١ _F	50	mA
Forward Current — Maximum Peak (PW = 100µs, 120 pps)	IF(pk)	1.0	A
Reverse Voltage — Maximum	VR	6.0	V
OUTPUT TRIAC		_	
Output Terminal Voltage — Maximum Transient (1)	V _{DRM}	600	V(pk)
Operating Voltage Range — Maximum Continuous	Vт	20 to 280	Vac(rms)

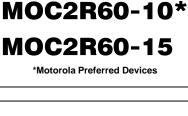
TOTAL DEVICE

(f = 47 - 63 Hz)

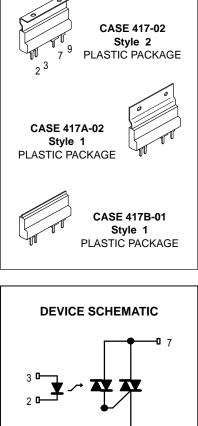
On-State Current Range

Load Power Factor Range

Junction Temperature Range


(Free Air, Power Factor ≥ 0.3)

Maximum Peak (t = 16.7 ms)


Non-Repetitive Single Cycle Surge Current -


Main Terminal Fusing Current (t = 8.3 ms)

Input-Output Isolation Voltage — Maximum (2) 47-63 Hz, 1 sec Duration	VISO	3750	Vac(rms)
Thermal Resistance — Power Triac Junction to Case (See Figure 18)	R _{θJC}	8.0	°C/W
Ambient Operating Temperature Range	T _{oper}	- 40 to +100	°C
Storage Temperature Range	T _{stg}	- 40 to +150	°C
Lead Soldering Temperature — Maximum (1/16" From Case, 10 sec Duration)	т∟	260	°C

OPTOISOLATOR 2 AMPS RANDOM-PHASE TRIAC OUTPUT 600 VOLTS

9. MAIN TERMINAL 1

1. Test voltages must be applied within dv/dt rating.

2. Input-Output isolation voltage, $V_{\mbox{\scriptsize ISO}},$ is an internal device dielectric breakdown rating.

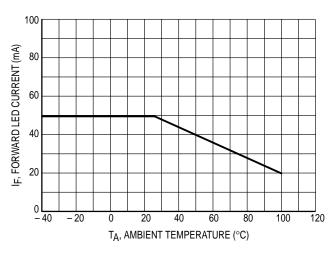
For this test, pins 2, 3 and the heat tab are common, and pins 7 and 9 are common.

POWER OPTO is a trademark of Motorola, Inc.

This document contains information on a new product. Specifications and information herein are subject to change without notice. **Preferred** devices are Motorola recommended choices for future use and best overall value.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
NPUT LED					
Forward Voltage (I _F = 10 mA)	VF	1.00	1.17	1.50	V
Reverse Leakage Current ($V_R = 6.0 V$)	I _R	—	1.0	100	μΑ
Capacitance	С	—	18	—	pF
DUTPUT TRIAC					
Off-State Leakage, Either Direction (I _F = 0, V _{DRM} = 400 V)	I _{DRM} (1)	—	0.25	100	μA
Critical Rate of Rise of Off-State Voltage (Static) (V _{in} = 400 vac(pk)) (1) (2)	dv/dt(s)	400	—	_	V/µs
Holding Current, Either Direction (I _F = 0, V_D = 12 V, I _T = 200 mA)	Ι _Η	_	10	_	mA
OUPLED					
LED Trigger Current Required to Latch OutputMOC2R60-10Either Direction (Main Terminal Voltage = 2.0 V) (3) (4)MOC2R60-15	I _{FT} (on)	—	7.0 12	10 15	mA
On-State Voltage, Either Direction (I_F = Rated I_{FT} (on), I_{TM} = 2.0 A)	Vтм	_	0.96	1.3	V
Commutating dv/dt (Rated V _{DRM} , I _T = 30 mA – 2.0 A(rms), T _A = – 40 + 100°C, f = 60 Hz) (2)	dv/dt (c)	5.0	—	_	V/µS
Common-mode Input-Output dv/dt (2)	dv/dt(cm)	_	40,000	—	V/μS
Input-Output Capacitance (V = 0, f = 1.0 MHz)	C _{ISO}	_	1.3	_	pF
Isolation Resistance (V _{I-O} = 500 V)	RISO	10 ¹²	10 ¹⁴	_	Ω


1. Per EIA/NARM standard RS-443, with Vp = 200 V, which is the instantaneous peak of the maximum operating voltage.


2. Additional dv/dt information, including test methods, can be found in Motorola applications note AN1048/D.

3. All devices are guaranteed to trigger at an I_F value less than or equal to the max I_{FT}. Therefore, the recommended operating I_F lies between the device's maximum I_{FT}(on) limit and the Maximum Rating of 50 mA.

TYPICAL CHARACTERISTICS

4. Current-limiting resistor required in series with LED.

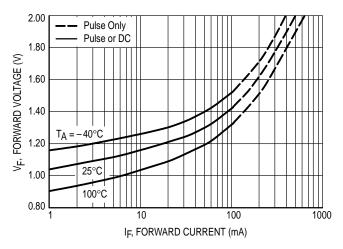
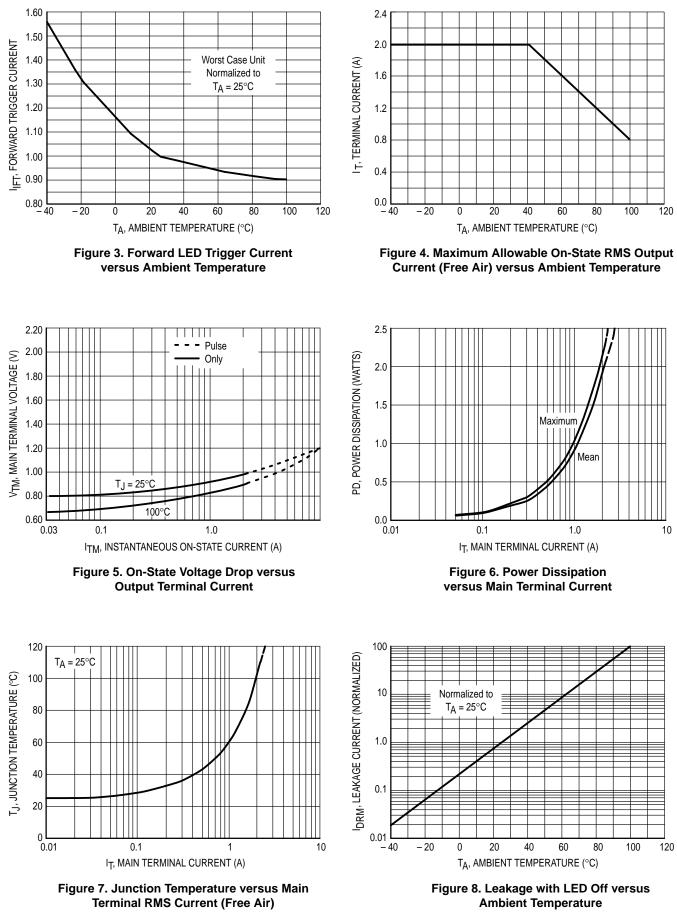
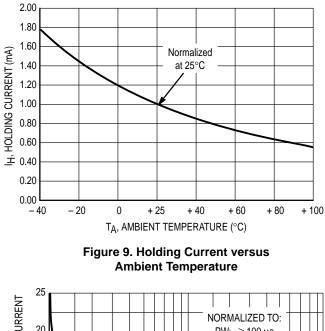




Figure 2. LED Forward Voltage versus LED Forward Current

Motorola Optoelectronics Device Data

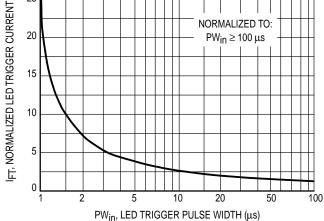


Figure 11. LED Current Required to Trigger versus LED Pulse Width

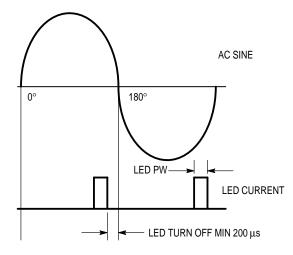


Figure 12. Minimum Time for LED Turn-Off to Zero Cross of AC Trailing Edge

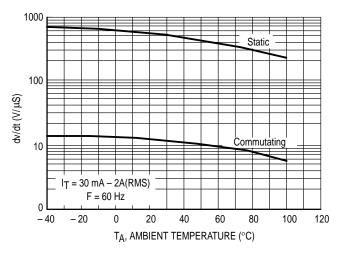


Figure 10. dv/dt versus Ambient Temperature

Phase Control Considerations

LED Trigger Current versus PW (normalized)

The Random Phase POWER OPTO Isolators are designed to be phase controllable. They may be triggered at any phase angle within the AC sine wave. Phase control may be accomplished by an AC line zero cross detector and a variable pulse delay generator which is synchronized to the zero cross detector. The same task can be accomplished by a microprocessor which is synchronized to the AC zero crossing. The phase controlled trigger current may be a very short pulse which saves energy delivered to the input LED. LED trigger pulse currents shorter than 100 μ s must have an increased amplitude as shown on Figure 11. This graph shows the dependency of the trigger current IFT versus the pulse width t (PW). The reason for the IFT dependency on the pulse width can be seen on the chart delay t(d) versus the LED trigger current.

IFT in the graph IFT versus (PW) is normalized in respect to the minimum specified IFT for static condition, which is specified in the device characteristic. The normalized IFT has to be multiplied with the devices guaranteed static trigger current.

Example:

Guaranteed IFT = 10 mA, Trigger pulse width PW = 3 μ s IFT (pulsed) = 10 mA x 5 = 50 mA

Minimum LED Off Time in Phase Control Applications

In phase control applications one intends to be able to control each AC sine half wave from 0 to 180 degrees. Turn on at zero degrees means full power, and turn on at 180 degrees means zero power. This is not quite possible in reality because triac driver and triac have a fixed turn on time when activated at zero degrees. At a phase control angle close to 180 degrees the turn on pulse at the trailing edge of the AC sine wave must be limited to end 200 μ s before AC zero cross as shown in Figure 12. This assures that the device has time to switch off. Shorter times may cause loss off control at the following half cycle.

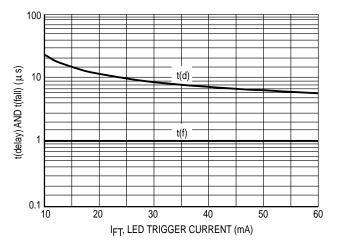


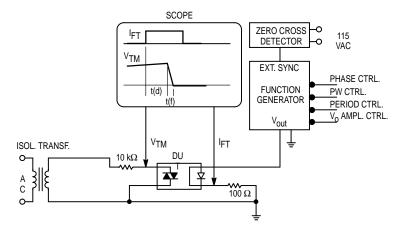
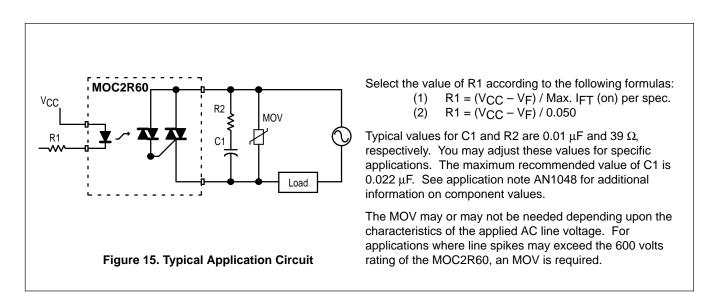
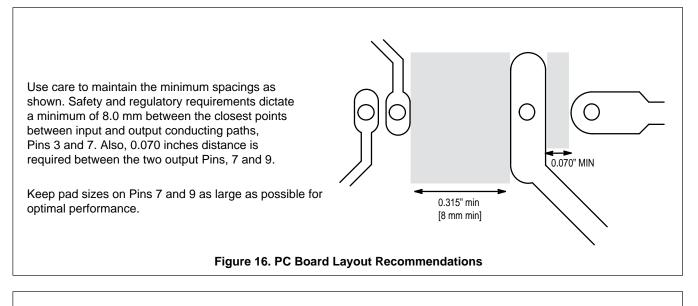
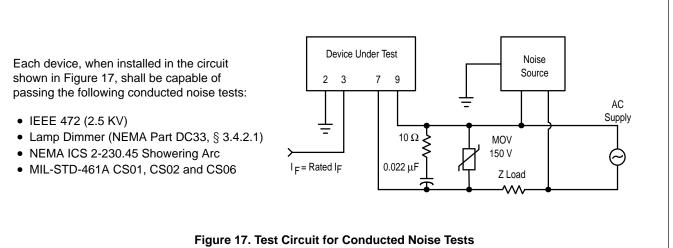
Figure 13. Delay Time, t(d), and Fall Time, t(f), versus LED Trigger Current

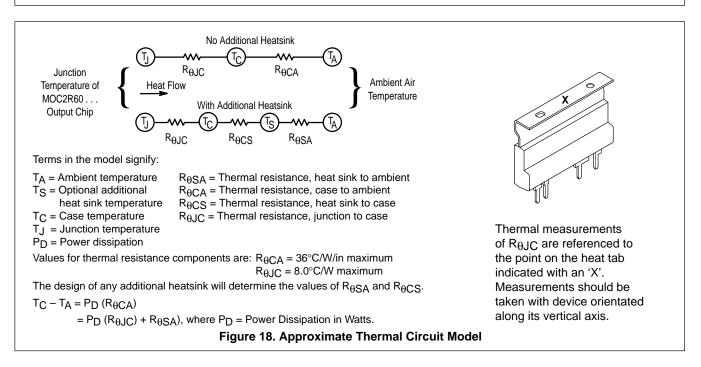
t(delay), t(f) versus IFT

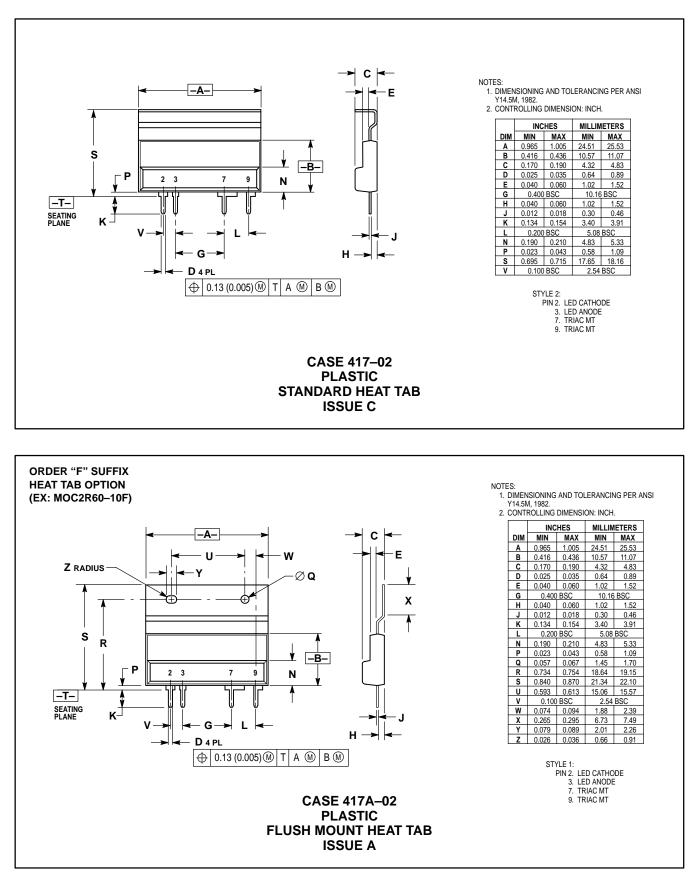
The POWER OPTO Isolators turn on switching speed consists of a turn on delay time t(d) and a fall time t(f). Figure 13 shows that the delay time depends on the LED trigger current, while the actual trigger transition time t(f) stays constant with about one micro second.

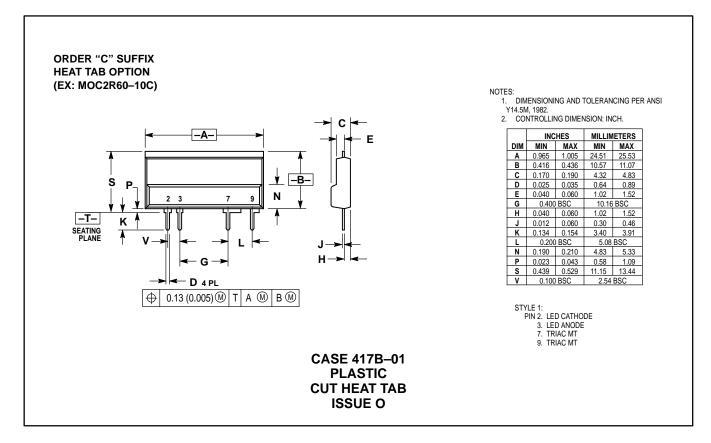
The delay time is important in very short pulsed operation because it demands a higher trigger current at very short trigger pulses. This dependency is shown in the graph I_{FT} versus LED PW.

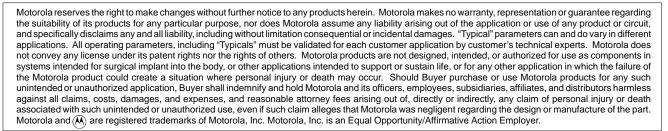
The turn on transition time t(f) combined with the power triacs turn on time is important to the power dissipation of this device.


Figure 14. Switching Time Test Circuit


Motorola Optoelectronics Device Data





PACKAGE DIMENSIONS

PACKAGE DIMENSIONS — CONTINUED

How to reach us:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315

MOC2R60-10/D

MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609 INTERNET: http://Design_NET.com

 \Diamond

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

