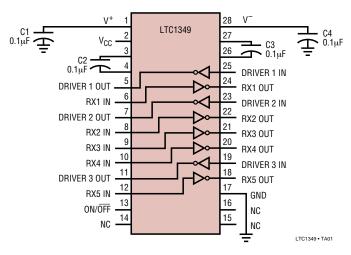


LTC1349

Y 5V Low Power RS232 3-Driver/5-Receiver Transceiver with 2 Receivers Active in Shutdown


FEATURES

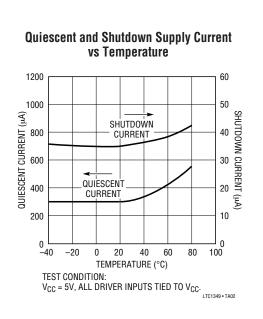
- Low Supply Current: 300μA
- Two Receivers Kept Alive in Shutdown
- ESD Protection Over ±10kV
- Operates from a Single 5V Supply
- Uses Small Capacitors: 0.1µF
- Operates to 120k Baud
- Three-State Outputs Are High Impedance When Off
- Output Overvoltage Does Not Force Current Back into Supplies
- RS232 I/O Lines Can Be Forced to ±25V Without Damage
- Pin Compatible with LT1137A and LT1237
- Flowthrough Architecture

APPLICATIONS

- Notebook Computers
- Palmtop Computers

TYPICAL APPLICATION

3-Drivers/5-Receivers with Shutdown


DESCRIPTION

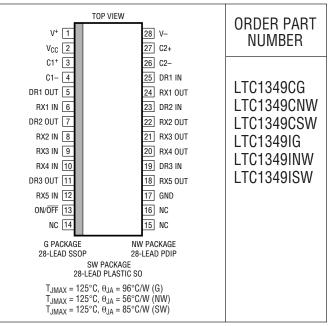
The LTC[®]1349 is a 3-driver/5-receiver RS232 transceiver with very low supply current. In the no load condition, the supply current is only 300μ A. The charge pump only requires four 0.1 μ F capacitors.

In Shutdown mode, two receivers are kept alive and the supply current is 35μ A. All RS232 outputs assume a high impedance state in Shutdown and with the power off.

The LTC1349 is fully compliant with all data rate and overvoltage RS232 specifications. The transceiver can operate up to 120k baud with a 2500pF, $3k\Omega$ load. Both driver outputs and receiver inputs can be forced to $\pm 25V$ without damage, and can survive multiple $\pm 10kV$ ESD strikes.

17, LTC and LT are registered trademarks of Linear Technology Corporation.

TECHNOLOGY


Downloaded from **Elcodis.com** electronic components distributor

1349fa

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V _{CC}) 6V
Input Voltage
Driver $-0.3V$ to V _{CC} + 0.3V
Receiver – 25V to 25V
On/\overline{Off} Pin $-0.3V$ to V_{CC} + 0.3V
Output Voltage
Driver – 25V to 25V
Receiver $-0.3V$ to V _{CC} + 0.3V
Short Circuit Duration
V ⁺
V ⁻
Driver Output Indefinite
Receiver Output Indefinite
Operating Temperature Range
Commercial (LTC1349C) 0°C to 70°C
Industrial (LTC1349I) –40°C to 85°C
Storage Temperature Range – 65°C to 150°C
Lead Temperature (Soldering, 10 sec)
g; •••••/

PACKAGE/ORDER INFORMATION

Consult LTC Marketing for parts specified with wider operating temperature ranges.

DC ELECTRICAL CHARACTERISTICS The • denotes specifications which apply over the full operating

temperature range. $V_{CC} = 5V$, $C1 = C2 = C3 = C4 = 0.1 \mu F$, unless noted.

PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
Any Driver						
Output Voltage Swing		egative		7.0 -6.5		V V
Logic Input Voltage Level	Input Low Level (V _{OUT} = High) Input High Level (V _{OUT} = Low)			1.4 1.4	0.8	V V
Logic Input Current	$V_{IN} = 5V$ $V_{IN} = 0V$	•			5 -5	μΑ μΑ
Output Short-Circuit Current	$V_{OUT} = 0V$		±9	±12		mA
Output Leakage Current	Shutdown, $V_{OUT} = \pm 20V$ (Note 3))	±10	±500	μA
Any Receiver						
Input Voltage Thresholds	Input Low Threshold Input High Threshold			1.3 1.7	2.4	V V
Hysteresis			0.1	0.4	1.0	V
Input Resistance	$-10V \le V_{IN} \le 10V$		3	5	7	kΩ
Output Voltage	Output Low, $I_{OUT} = -1.6mA (V_{CC} = 5V)$ Output High, $I_{OUT} = 160\mu A (V_{CC} = 5V)$			0.2 4.8	0.4	V V
Output Short-Circuit Current	Sinking Current, V _{OUT} = V _{CC}		-15	-40		mA
Output Leakage Current	Shutdown, $0 \le V_{OUT} \le V_{CC}$ (Note 3)		•	1	10	μA
Power Supply Generator						
V ⁺ Output Voltage	I _{OUT} = 0mA I _{OUT} = 12mA			8.0 7.5		V V
V ⁻ Output Voltage	I _{OUT} = 0mA I _{OUT} = -12mA			-8.0 -7.0		V V
Supply Rise Time	Shutdown to Turn-On			0.2		ms
						1349fa

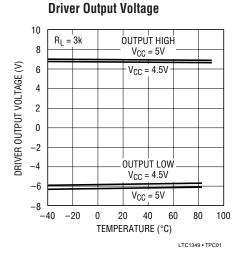
2

DC ELECTRICAL CHARACTERISTICS The • denotes specifications which apply over the full operating

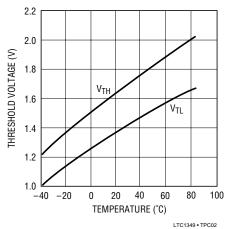
temperature range. V_{CC} = 5V, C1 = C2 = C3 = C4 = 0.1 μ F, unless noted.

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
Power Supply					
V _{CC} Supply Current	No Load (All Drivers $V_{IN} = V_{CC}$)(Note 2), 0°C $\leq T_A \leq$ 70°C		0.3	0.8	mA
	No Load (All Drivers $V_{IN} = 0V$)(Note 2), $0^{\circ}C \le T_A \le 70^{\circ}C$		0.5	1.0	mA
	No Load (All Drivers $V_{IN} = V_{CC}$)(Note 2), 0°C $\leq T_A \leq 85$ °C		0.3	1.0	mA
	No Load (All Drivers $V_{IN} = V_{CC}$)(Note 2), $-40^{\circ}C \le T_A \le 0^{\circ}C$		0.3	1.5	mA
	No Load (All Drivers $V_{IN} = 0V$)(Note 2), $-40^{\circ}C \le T_A \le 85^{\circ}C$		0.5	1.5	mA
Supply Leakage Current (V _{CC})	Shutdown (Note 3)		35	50	μA
On/Off Threshold Low			1.4	0.8	V
On/Off Threshold High		2.0	1.4		V

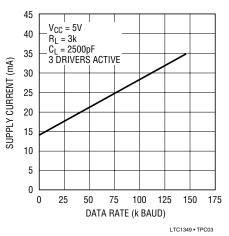
AC CHARACTERISTICS The \bullet denotes specifications which apply over the full operating temperature range. V_{CC} = 5V, C1 = C2 = C3 = C4 = 0.1 µF, unless noted.

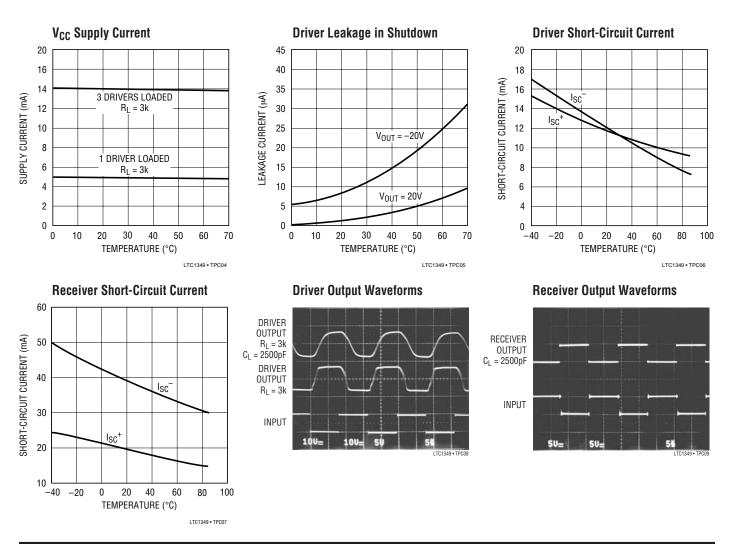

PARAMETER CONDITIONS MIN TYP MAX UNITS Slew Rate $R_{L} = 3k, C_{L} = 51pF$ 8 30 V/µs $R_L = 3k, C_L = 2500pF$ 3 5 V/µs 2 Driver Propagation Delay t_{HLD} (Figure 1) 3.5 μS (TTL to RS232) t_{LHD} (Figure 1) 2 3.5 μS **Receiver Propagation Delay** t_{HLR} (Figure 2) 0.3 0.8 μS t_{LHR} (Figure 2) (RS232 to TTL) 0.2 0.8 μS

Note 1: Absolute Maximum Ratings are those values beyond which the life of the device may be impaired.


Note 3: Supply current and leakage current measurements in Shutdown are performed with $V_{ON/\overline{OFF}} = 0V$.

Note 2: Supply current is measured with driver and receiver outputs unloaded.


TYPICAL PERFORMANCE CHARACTERISTICS


Receiver Input Thresholds

Supply Current vs Data Rate

TYPICAL PERFORMANCE CHARACTERISTICS

PIN FUNCTIONS

 V_{CC} : 5V Input Supply Pin. Supply current is typically $35\mu A$ in the Shutdown mode. This pin should be decoupled with a 0.1 μ F ceramic capacitor.

GND: Ground Pin.

ON/OFF: TTL/CMOS Compatible Shutdown Pin. A logic low puts the device in Shutdown mode, with receivers 4 and 5 kept alive and the supply current equal to 35μ A. All driver outputs and other receiver outputs are in high impedance state. This pin can not float.

V⁺: Positive Supply Output (RS232 Drivers). V⁺ \cong 2V_{CC} – 1V. This pin requires an external capacitor C = 0.1µF for charge storage. The capacitor may be tied to ground or 5V.

With multiple devices, the V⁺ and V⁻ pins may be paralleled into common capacitors. For large numbers of devices, increasing the size of the shared common storage capacitors is recommended to reduce ripple.

V⁻: Negative Supply Output (RS232 Drivers). V⁻ \approx 2V_{CC} – 1.5V. This pin requires an external capacitor C = 0.1µF for charge storage.

C1⁺, C1⁻, C2⁺, C2⁻: Commutating Capacitor Inputs. These pins require two external capacitors $C = 0.1 \mu$ F: one from C1⁺ to C1⁻, and another from C2⁺ to C2⁻. To maintain charge pump efficiency, the capacitor's effective series resistance should be less than 20Ω .

PIN FUNCTIONS

DRIVER IN: RS232 Driver Input Pins. Inputs are TTL/ CMOS compatible. Inputs should not be allowed to float. Tie unused inputs to V_{CC} .

DRIVER OUT: Driver Outputs at RS232 Voltage Levels. Outputs are in a high impedance state when in Shutdown mode or $V_{CC} = 0V$. The driver outputs are protected against ESD to $\pm 10kV$ for human body model discharges. **RX IN:** Receiver Inputs. These pins can be forced to $\pm 25V$ without damage. The receiver inputs are protected against ESD to $\pm 10kV$ for human body model discharges. Each receiver provides 0.4V of hysteresis for noise immunity.

RX OUT: Receiver Outputs with TTL/CMOS Voltage Levels. Receiver 1, 2 and 3 outputs are in a high impedance state when in Shutdown mode to allow data line sharing. Receivers 4 and 5 are kept alive in Shutdown.

SWITCHING TIME WAVEFORMS

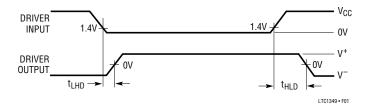
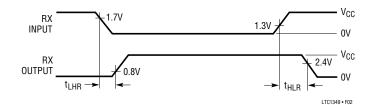
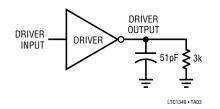
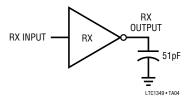


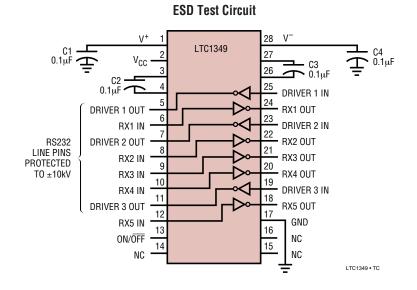
Figure 1. Driver Propagation Delay Timing


Figure 2. Receiver Propagation Delay Timing

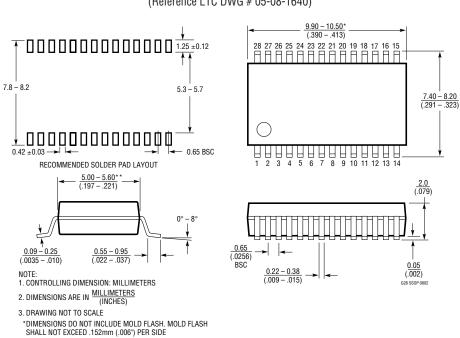
TEST CIRCUITS

Driver Timing Test Load

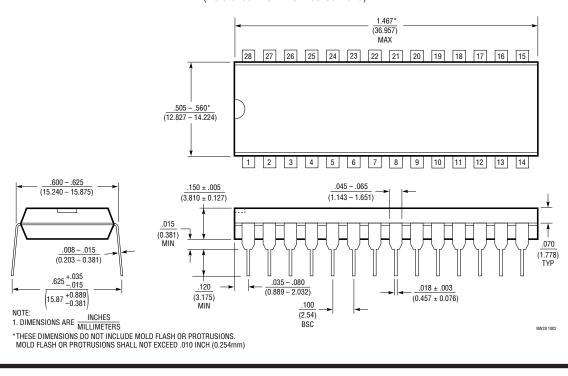


Receiver Timing Test Load

1349fa

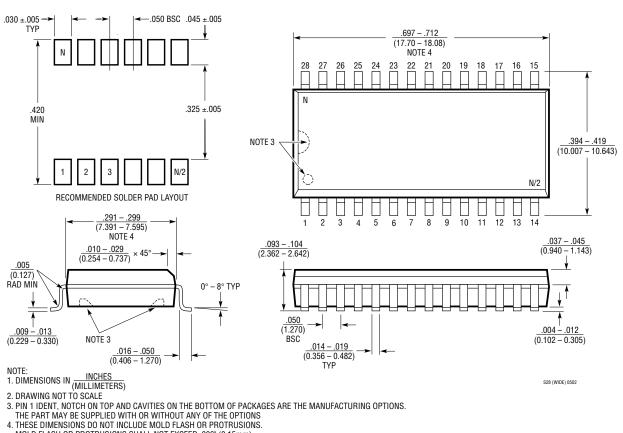

TEST CIRCUITS

LINEAR


PACKAGE DESCRIPTION

G Package 28-Lead Plastic SSOP (5.3mm) (Reference LTC DWG # 05-08-1640)

NW Package 28-Lead PDIP (Wide .600 Inch) (Reference LTC DWG # 05-08-1520)


**DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED .254mm (.010") PER SIDE

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

T LINUAR

PACKAGE DESCRIPTION

SW Package 28-Lead Plastic Small Outline (Wide .300 Inch) (Reference LTC DWG # 05-08-1620)

MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT®1137A	5V, 3 Driver, 5 Receiver RS232 Transceiver	±15kV ESD per IEC 1000-4
LTC1327	3.3V, 3 Driver, 5 Receiver RS562 Transceiver	300µA Supply Current, 0.2µA in Shutdown
LTC1337	5V, 3 Driver, 5 Receiver RS232 Transceiver	300µA Supply Current, 1µA in Shutdown
LTC1348	3.3V to 5V, 3 Driver, 5 Receiver RS232 Transceiver	True RS232 on 3.3V, 5 Receivers Active in Shutdown

