

^{OGY} Precision, Micropower, Single Supply Instrumentation Amplifier (Fixed Gain = 10 or 100)

The LT®1101 establishes the following milestones:

(1) It is the first micropower instrumentation amplifier,

(2) It is the first single supply instrumentation amplifier,

(3) It is the first instrumentation amplifier to feature fixed

gains of 10 and/or 100 in low cost, space-saving 8-lead

The LT1101 is completely self-contained: no external gain

setting resistor is required. The LT1101 combines its

micropower operation (75µA supply current) with a

gain error of 0.008%, gain linearity of 3ppm, gain drift of

1ppm/°C. The output is guaranteed to drive a 2k load to

Other precision specifications are also outstanding: 50 µV input offset voltage, 130 pA input offset current, and

low drift $(0.4\mu V/^{\circ}C \text{ and } 0.7pA/^{\circ}C)$. In addition, unlike other instrumentation amplifiers, there is no output offset

A full set of specifications are provided with ±15V dual

supplies and for single 5V supply operation. The LT1101

can be operated from a single lithium cell or two Ni-Cad

batteries. Battery voltage can drop as low as 1.8V, yet the

LT1101 still maintains its gain accuracy. In single supply

applications, both input and output voltages swing

to within a few millivolts of ground. The output sinks

current while swinging to ground—no external, power

consuming pull down resistors are needed.

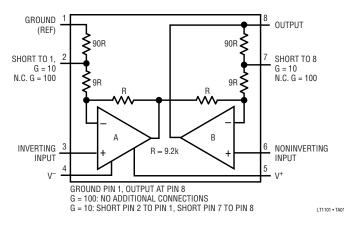
±10V with excellent gain accuracy.

voltage contribution to total error.

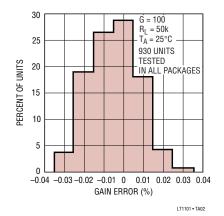
DESCRIPTION

packages.

FEATURES


- Gain Error: 0.04% Max
- Gain Nonlinearity: 0.0008% (8ppm) Max
- Gain Drift: 4ppm/°C Max
- Supply Current: 105µA Max
- Offset Voltage: 160µV Max
- Offset Voltage Drift: 0.4µV/°C Typ
- Offset Current: 600pA Max
- CMRR, G = 100: 100dB Min
- 0.1Hz to 10Hz Noise: 0.9μVp-p Typ 2.3pAp-p Typ
- Gain Bandwidth Product: 250kHz Min
- Single or Dual Supply Operation
- Surface Mount Package Available

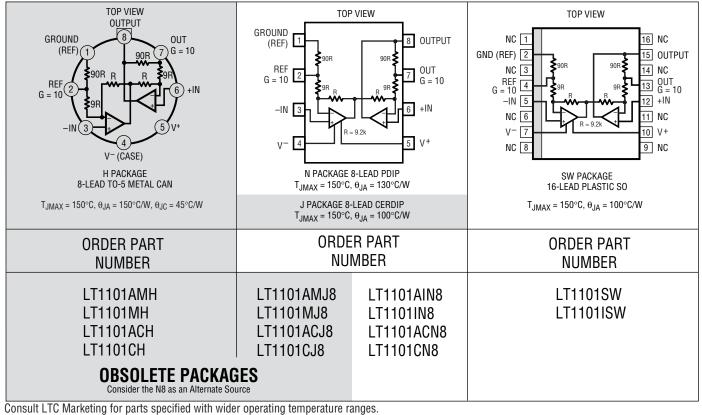
APPLICATIONS


- Differential Signal Amplification in Presence of Common Mode Voltage
- Micropower Bridge Transducer Amplifier
 - Thermocouples
 - Strain Gauges
 - Thermistors
- Differential Voltage-to-Current Converter
- Transformer Coupled Amplifier
- 4mA to 20mA Bridge Transmitter

C, LTC and LT are registered trademarks of Linear Technology Corporation.

TYPICAL APPLICATION

Gain Error Distribution



ABSOLUTE MAXIMUM RATINGS (Note 1)

Operating	Temperature	Range
-----------	-------------	-------

LT1101AM/LT1101M (OBSOLETE)	-55°C to 125°C
LT1101AI/LT1101I	−40°C to 85°C
LT1101AC/LT1101C	0°C to 70°C
Storage Temperature Range	-65°C to 150°C
Lead Temperature (Soldering, 10 sec)	

PACKAGE/ORDER INFORMATION

ELECTRICAL CHARACTERISTICS $v_{s} = 5V$, 0V, $v_{CM} = 0.1V$, $v_{REF(PIN 1)} = 0.1V$, G = 10 or 100, $T_{A} = 25^{\circ}C$, unless

otherwise noted. (Note 4)

SYMBOL	PARAMETER	CONDITIONS	LT1 MIN	101AM/A Typ	I/AC Max	MIN	T1101M/I/ TYP	C Max	UNITS
GE	Gain Error	$G = 100, V_0 = 0.1V \text{ to } 3.5V, R_L = 50k$ $G = 10, V_0 = 0.1V \text{ to } 3.5V, R_L = 50k$		0.010 0009	0.050 0.040		0.011	0.075	% %
G _{NL}	Gain Nonlinearity	$G = 100, R_L = 50k$ $G = 10, R_L = 50k$ (Note 2)		20 3	60 7		20 3	75 8	ppm ppm
V _{0S}	Input Offset Voltage	LT1101SW		50	160		60 250	220 600	μV μV
l _{os}	Input Offset Current			0.13	0.60		0.15	0.90	nA
IB	Input Bias Current			6	8		6	10	nA
ls	Supply Current			75	105		78	120	μA
									1101fa

2

ELECTRICAL CHARACTERISTICS $V_S = 5V$, 0V, $V_{CM} = 0.1V$, $V_{REF(PIN 1)} = 0.1V$, G = 10 or 100, $T_A = 25^{\circ}C$, unless otherwise noted. (Note 4)

		CONDITIONS	LT1	101AM/A	I/AC	L			
SYMBOL	PARAMETER		MIN	TYP	MAX	MIN	ТҮР	MAX	UNITS
CMRR	Common Mode Rejection Ratio	$\begin{array}{l} \mbox{1k Source Imbalance} \\ \mbox{G} = 100, \ \mbox{V}_{CM} = 0.07 \mbox{V to } 3.4 \mbox{V} \\ \mbox{G} = 10, \ \mbox{V}_{CM} = 0.07 \mbox{V to } 3.1 \mbox{V} \end{array}$	95 84	106 100		92 82	105 99		dB dB
	Minimum Supply Voltage	(Note 5)		1.8	2.3		1.8	2.3	V
V ₀	Maximum Output Voltage Swing	Output High, 50k to GND Output High, 2k to GND Output Low, $V_{REF} = 0$, No Load Output Low, $V_{REF} = 0$, 2k to GND Output Low, $V_{REF} = 0$, $I_{SINK} = 100 \mu A$	4.1 3.5	4.3 3.9 3.3 0.5 90	6 1 130	4.1 3.5	4.3 3.9 3.3 0.5 90	6 1 130	V V mV mV mV
BW	Bandwidth	G = 100 (Note 2) G = 10 (Note 2)	2.0 22	3.0 33		2.0 22	3.0 33		kHz kHz
SR	Slew Rate	(Note 2)	0.04	0.07		0.04	0.07		V/µs

V_S = $\pm 15V,~V_{CM}$ = 0V, T_A = 25°C, Gain = 10 or 100, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		1101AM/A Typ	AC/AC/MAX	MIN	.T1101M/I/ TYP	C Max	UNITS
GE	Gain Error	$ \begin{array}{c} G = 100, V_0 = \pm 10V, R_L = 50k \\ G = 100, V_0 = \pm 10V, R_L = 2k \\ G = 100, V_0 = \pm 10V, R_L = 50k \text{ or } 2k \end{array} $		0.008 0.011 0.008	0.040 0.055 0.040		0.009 0.012 0.009	0.060 0.070 0.060	% % %
G _{NL}	Gain Nonlinearity			7 24 3	16 45 8		8 25 3	20 60 9	ppm ppm ppm
V _{OS}	Input Offset Voltage	LT1101SW		50	160		60 250	220 600	μV μV
l _{os}	Input Offset Current			0.13	0.60		0.15	0.90	nA
IB	Input Bias Current			6	8		6	10	nA
<u>.</u>	Input Resistance Common Mode Differential Mode	(Note 2) (Note 2)	47	7 12		3 5	7 12		GΩ GΩ
en	Input Noise Voltage	0.1Hz to 10Hz (Note 3)		0.9	1.8		0.9		μVр-р
	Input Noise Voltage Density	f ₀ = 10Hz (Note 3) f ₀ = 1000Hz (Note 3)		45 43	64 54		45 43		nV/√ <u>Hz</u> nV/√Hz
i _n	Input Noise Current	0.1Hz to 10Hz (Note 3)		2.3	4.0		2.3		рАр-р
	Input Noise Current Density	f ₀ =10Hz (Note 3) f ₀ = 1000Hz		0.06 0.02	0.10		0.06 0.02		pA/√ <u>Hz</u> pA/√Hz
	Input Voltage Range	G = 100 G = 10	13.0 -14.4 11.5 -13.0	13.8 14.7 12.5 13.3		13.0 -14.4 11.5 -13.0	13.8 -14.7 12.5 -13.3		V V V V
CMRR	Common Mode Rejection Ratio	1k Source Imbalance G = 100, Over CM Range G = 10, Over CM Range	100 84	112 100		98 82	112 99		dB dB
PSRR	Power Supply Rejection Ratio	$V_{\rm S}$ = +2.2V, -0.1V to ±18V	102	114		100	114		dB
Is	Supply Current			92	130		94	150	μA
	1		1			1			1101fa

ELECTRICAL CHARACTERISTICS $V_{S} = \pm 15V$, $V_{CM} = 0V$, $T_{A} = 25^{\circ}C$, Gain = 10 or 100, unless otherwise noted.

			LT1101AM/AI			LT1101M/I				
SYMBOL	PARAMETER	CONDITIONS	MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS	
V ₀	Maximum Output Voltage Swing	$ \begin{array}{l} R_L = 50k \\ R_L = 2k \end{array} $	13.0 11.0	14.2 13.2		13.0 11.0	14.2 13.2		V V	
BW	Bandwidth	G = 100 (Note 2) G = 10 (Note 2)	2.3 25	3.5 37		2.3 25	3.5 37		kHz kHz	
SR	Slew Rate		0.06	0.10		0.06	0.10		V/µs	

ELECTRICAL CHARACTERISTICS $V_S = \pm 15V$, $V_{CM} = 0V$, Gain = 10 or 100, $-55^{\circ}C \le T_A \le 125^{\circ}C$ for AM/M grades, $-40^{\circ}C \le T_A \le 85^{\circ}C$ for Al/l grades, unless otherwise noted.

CVMD01		CONDITIONS		.T1101AM/		MIN	LT1101M/		
SYMBOL	PARAMETER	CONDITIONS	MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS
G_E	Gain Error	$G = 100, V_0 = \pm 10V, R_L = 50k$		0.024	0.070		0.026	0.100	%
		G = 100, V ₀ = \pm 10V, R _L = 5k G = 10, V ₀ = \pm 10V, R _I = 50k or 5k		0.030 0.015	0.100 0.070		0.035 0.018	0.130 0.100	%
TCGE	Gain Error Drift	$G = 100, R_L = 50k$		2 2	4 7		2	5	ppm/°C
	(Note 2)	G = 100, $R_L = 5k$ G = 10, $R_I = 50k$ or 5k		2	4		2 1	8 5	ppm/°C ppm/°C
				•				-	
G_{NL}	Gain Nonlinearity	G = 100, R _L = 50k G = 100, R _L = 5k		24 70	70 300		26 75	90 500	ppm ppm
		$G = 10, R_{\rm I} = 50k$		4	13		5	15	ppm
		$G = 10, R_L = 5k$		10	40		12	60	ppm
V _{OS}	Input Offset Voltage			90	350		110	500	μV
- 03		LT1101ISW					110	950	μV
$\Delta V_{0S} / \Delta T$	Input Offset Voltage Drift	(Note 2)		0.4	2.0		0.5	2.8	μV/°C
00		LT1101ISW					0.5	4.8	mV/°C
I _{OS}	Input Offset Current			0.16	0.80		0.19	1.30	nA
$\Delta I_{0S} / \Delta T$	Input Offset Current Drift	(Note 2)		0.5	4.0		0.8	7.0	pA/°C
IB	Input Bias Current			7	10		7	12	nA
$\Delta I_{B} / \Delta T$	Input Bias Current Drift	(Note 2)		10	25		10	30	pA/°C
CMRR	Common Mode	$G = 100, V_{CM} = -14.4V \text{ to } 13V$	96	111		94	111		dB
	Rejection Ratio	$G = 100, V_{CM} = -13V \text{ to } 11.5V$	80	99		78	98		dB
PSRR	Power Supply	$V_{\rm S} = 3.0, -0.1$ V to ±18V	98	110		94	110		dB
	Rejection Ratio								
I _S	Supply Current			105	165		108	190	μA
V ₀	Maximum Output	R _L = 50k	12.5	14.0		12.5	14.0		V
-	Voltage Swing	$R_{L} = 5k$	11.0	13.5		11.0	13.5		V

ELECTRICAL CHARACTERISTICS $V_S = \pm 15V$, $V_{CM} = 0V$, Gain = 10 or 100, $0^{\circ}C \le T_A \le 70^{\circ}C$, unless otherwise noted.

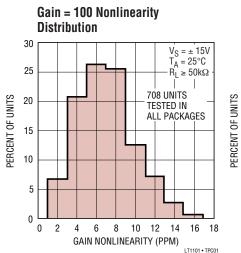
				LT1101AC			LT1101C/S		
SYMBOL	PARAMETER	CONDITIONS	MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS
G _E	Gain Error	$ \begin{array}{l} G = 100, V_0 = \pm 10V, R_L = 50k \\ G = 100, V_0 = \pm 10V, R_L = 2k \\ G = 10, V_0 = \pm 10V, R_L = 50k \text{ or } 2k \end{array} $		0.012 0.018 0.009	0.055 0.085 0.055		0.014 0.020 0.010	0.080 0.100 0.080	% % %
TCG _E	Gain Error Drift (Note 2)			1 2 1	4 7 4		1 2 1	5 9 5	ppm/°C ppm/°C ppm/°C
G _{NL}	Gain Nonlinearity			9 33 4	25 75 10		10 36 4	35 100 11	ppm ppm ppm
V _{OS}	Input Offset Voltage	LT1101SW		70	250		85 300	350 800	μV μV
$\Delta V_{0S} / \Delta T$	Input Offset Voltage Drift	(Note 2) LT1101SW		0.4	2.0		0.5 1.2	2.8 4.5	μV/°C μV/°C
I _{OS}	Input Offset Current			0.14	0.70		0.17	1.10	nA
$\Delta I_{0S} / \Delta T$	Input Offset Current Drift	(Note 2)		0.5	4.0		0.8	7.0	pA/°C
IB	Input Bias Current			6	9		6	11	nA
$\Delta I_{B} / \Delta T$	Input Bias Current Drift	(Note 2)		10	25		10	30	pA/°C
CMRR	Common Mode Rejection Ratio		98 82	112 100		96 80	112 99		dB dB
PSRR	Power Supply Rejection Ratio	$V_{\rm S}$ = 2.5, -0.1V to ±18V	100	112		97	112		dB
I _S	Supply Current			98	148		100	170	μΑ
V ₀	Maximum Output Voltage Swing	$R_{L} = 50k$ $R_{L} = 2k$	±12.5 ±10.5	±14.1 ±13.0		±12.5 ±10.5	±14.1 ±13.0		V V

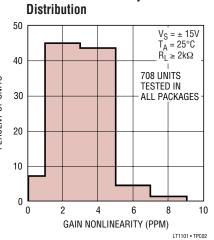
$\begin{array}{l} \textbf{ELECTRICAL CHARACTERISTICS} \\ V_S = 5V, \ 0V, \ V_{CM} = 0.1V, \ V_{REF(PIN \ 1)} = 0.1V, \ Gain = 10 \ or \ 100, \\ -40^\circ C \leq T_A \leq 85^\circ C \ for \ Al/l \ grades, \ unless \ otherwise \ noted \ (Note \ 4). \end{array}$

			L	T1101AM/	AI		LT1101M/I		
SYMBOL	PARAMETER	CONDITIONS	MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS
G _E	Gain Error	$ \begin{array}{l} G = 100, V_0 = 0.1V \mbox{ to } 3.5V, R_L = 50k \\ G = 10, V_{CM} = 0.15, R_L = 50k \end{array} $		0.026 0.011	0.080 0.070		0.028 0.014	0.120 0.100	% %
TCG _E	Gain Error Drift	R _L = 50k (Note 2)		1	4		1	5	ppm/°C
G _{NL}	Gain Nonlinearity			45 4	110 13		48 5	140 15	ppm ppm
V _{OS}	Input Offset Voltage	LT1101ISW		90	350		110 110	500 950	μV μV
$\Delta V_{0S} / \Delta T$	Input Offset Voltage Drift	(Note 2) LT1101ISW		0.4	2.0		0.5 0.5	2.8 4.8	μV/°C μV/°C
l _{OS}	Input Offset Current			0.16	0.80		0.19	1.30	nA
$\Delta V_{0S} / \Delta T$	Input Offset Current Drift	(Note 2)		0.5	4.0		0.8	7.0	pA/°C
IB	Input Bias Current			7	10		7	12	nA
$\Delta I_{B} / \Delta T$	Input Bias Current Drift	(Note 2)		10	25		10	30	pA/°C
CMRR	Common Mode Rejection Ratio	$ \begin{array}{l} G = 100, V_{CM} = 0.1V \mbox{ to } 3.2V \\ G = 10, V_{CM} = 0.1V \mbox{ to } 2.9V, V_{REF} = 0.15V \\ \end{array} $	91 80	105 98		88 77	104 97		dB dB
I _S	Supply Current			88	135		92	160	μΑ
V ₀	Maximum Output Voltage Swing	Output High, 50k to GND Output High, 2k to GND Output Low, $V_{REF} = 0$, No Load Output Low, $V_{REF} = 0$, 2k to GND Output Low, $V_{REF} = 0$, $I_{SINK} = 100\mu$ A	3.8 3.0	4.1 3.7 4.5 0.7 125	8 1.5 170	3.8 3.0	4.1 3.7 4.5 0.7 125	8 1.5 170	V V mV mV WV

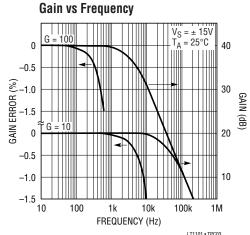
ELECTRICAL CHARACTERISTICS $V_S = 5V$, 0V, $V_{CM} = 0.1V$, $V_{REF(PIN 1)} = 0.1V$, Gain = 10 or 100, $0^{\circ}C \le T_A \le 70^{\circ}C$, unless otherwise noted (Note 4).

			LT1101AC	T1101AC		LT1101C/S		
PARAMETER	CONDITIONS	MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS
Gain Error	$ \begin{array}{l} G = 100, V_0 = 0.1V \mbox{ to } 3.5V, R_L = 50k \\ G = 10, V_{CM} = 0.15V, R_L = 50k \end{array} $		0.017 0.010	0.065 0.060		0.018 0.012	0.095 0.080	% %
Gain Error Drift	R _L = 50k (Note 2)		1	4		1	5	ppm/°C
Gain Nonlinearity			25 4	80 10		25 4	100 11	ppm ppm
Input Offset Voltage	LT1101SW		70	250		85 300	350 800	μV μV
Input Offset Voltage Drift	(Note 2) LT1101SW		0.4	2.0		0.5 1.2	2.8 4.5	μV/°C μV/°C
Input Offset Current			0.14	0.70		0.17	1.10	nA
Input Offset Current Drift	(Note 2)		0.5	4.0		0.8	7	pA/°C
Input Bias Current			6	9		6	11	nA
Input Bias Current Drift	(Note 2)		10	25		10	30	pA/°C
Common Mode Rejection Ratio	$ \begin{array}{l} G = 100, V_{CM} = 0.07V \ to \ 3.3V \\ G = 10, V_{CM} = 0.07V \ to \ 3V, V_{REF} = 0.15V \end{array} $	93 82	105 99		90 80	104 98		dB dB
Supply Current			80	120		85	145	μA
Maximum Output Voltage Swing	Output High, 50k to GND Output High, 2k to GND Output Low, $V_{REF} = 0$, No Load Output Low, $V_{REF} = 0$, 2k to GND Output Low, $V_{REF} = 0$, $I_{SINK} = 100\mu A$	4.0 3.3	4.2 3.8 4 0.6 100	7 1.2 150	4.0 3.3	4.2 3.8 4 0.6 100	7 1.2 150	V V mV mV
	Gain ErrorGain Error DriftGain NonlinearityInput Offset VoltageInput Offset Voltage DriftInput Offset CurrentInput Offset Current DriftInput Bias Current DriftInput Bias Current DriftCommon ModeRejection RatioSupply CurrentMaximum Output	Gain Error $G = 100, V_0 = 0.1V$ to $3.5V, R_L = 50k$ $G = 10, V_{CM} = 0.15V, R_L = 50k$ Gain Error Drift $R_L = 50k$ (Note 2)Gain Nonlinearity $G = 100, R_L = 50k$ $G = 10, R_L = 50k$ (Note 2)Input Offset VoltageLT1101SWInput Offset Voltage Drift(Note 2) LT1101SWInput Offset Current(Note 2) LT1101SWInput Offset Current Drift(Note 2) $Common Mode$ Rejection RatioG = 100, V_{CM} = 0.07V to $3.3V$ $G = 100, V_{CM} = 0.07V$ to $3.5V$, V_{REF} = 0.15VSupply CurrentOutput High, 50k to GND Output High, 2k to GND Output Low, V_{REF} = 0, No Load Output Low, V_{REF} = 0, 2k to GND	Gain Error $G = 100, V_0 = 0.1V \text{ to } 3.5V, R_L = 50k$ $G = 10, V_{CM} = 0.15V, R_L = 50k$ Gain Error Drift $R_L = 50k$ (Note 2)Gain Nonlinearity $G = 100, R_L = 50k$ $G = 10, R_L = 50k$ (Note 2)Input Offset VoltageLT1101SWInput Offset Voltage Drift(Note 2) LT1101SWInput Offset Current(Note 2) LT1101SWInput Offset Current Drift(Note 2) $Input Bias Current DriftInput Bias Current93G = 100, V_{CM} = 0.07V to 3.3VG = 10, V_{CM} = 0.07V to 3.3V, V_{REF} = 0.15VSupply CurrentOutput High, 50k to GNDOutput High, 2k to GNDOutput Low, V_{REF} = 0, No LoadOutput Low, V_{REF} = 0, 2k to GND$	PARAMETERCONDITIONSMINTYPGain Error $G = 100, V_0 = 0.1V$ to $3.5V, R_L = 50k$ 0.017 Gain Error Drift $R_L = 50k$ (Note 2)1Gain Nonlinearity $G = 100, R_L = 50k$ 25 G = 10, R_L = 50k (Note 2)4Input Offset VoltageLT1101SWInput Offset Voltage Drift(Note 2)0.4Input Offset Current0.14Input Offset Current0.14Input Offset Current Drift(Note 2)0.5Input Bias Current Drift(Note 2)0.5Input Bias Current DriftG = 100, V_{CM} = 0.07V to 3.3V93Ge = 10, V_{CM} = 0.07V to 3V, V_{REF} = 0.15V82Supply Current0utput High, 50k to GND4.0Maximum OutputOutput High, 50k to GND4.04.2Voltage SwingOutput Low, V_{REF} = 0, No Load Output Low, V_{REF} = 0, 2k to GND4.0	Gain Error $G = 100, V_0 = 0.1V \text{ to } 3.5V, R_L = 50k$ 0.017 0.065 Gain Error Drift $R_L = 50k \text{ (Note 2)}$ 1 4 Gain Nonlinearity $G = 100, R_L = 50k$ 25 80 Gain Nonlinearity $G = 100, R_L = 50k$ (Note 2) 4 10 Input Offset Voltage LT1101SW 70 250 Input Offset Voltage Drift (Note 2) 0.4 2.0 Input Offset Voltage Drift (Note 2) 0.14 0.70 Input Offset Current 0.14 0.70 250 Input Offset Current Drift (Note 2) 0.5 4.0 Input Bias Current 0.14 0.70 250 Input Bias Current Drift (Note 2) 0.5 4.0 Input Bias Current Drift (Note 2) 10 25 Common Mode $G = 100, V_{CM} = 0.07V$ to $3.3V$ 93 105 Rejection Ratio $G = 10, V_{CM} = 0.07V$ to $3.V, V_{REF} = 0.15V$ 82 99 Supply Current 80 120 3.3 3.8 Maxi	PARAMETER CONDITIONS MIN TYP MAX MIN Gain Error $G = 100, V_0 = 0.1V \text{ to } 3.5V, R_L = 50k$ 0.017 0.065 0.010 0.060 Gain Error Drift $R_L = 50k (Note 2)$ 1 4 4 $6ain Nonlinearity$ $G = 100, R_L = 50k$ 25 80 4 10 Input Offset Voltage LT1101SW 70 250 25 80 Input Offset Voltage Drift (Note 2) 0.4 2.0 2.0 1 4 10 Input Offset Current (Note 2) 0.4 2.0 2.0 1 4.0 2.0 1 10 2.0 10 2.0 10 2.0 10 2.0 10 2.0 10 2.0 10 2.0 10 2.0 10 2.0 10 2.0 10 2.0 10 2.0 10 2.0 10 2.0 10 2.0 10 10 10 <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

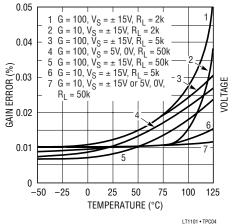

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

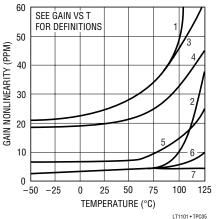

Note 2: This parameter is not tested. It is guaranteed by design and by inference from other tests.

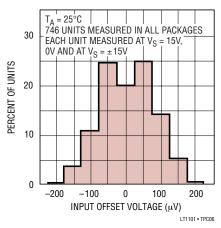
Note 3: This parameter is tested on a sample basis only.


Note 4: These test conditions are equivalent to $V_S = 4.9V, -0.1V$, $V_{CM} = 0V, V_{REF(PIN1)} = 0V.$

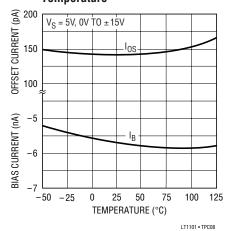
Note 5: Minimum supply voltage is guaranteed by the power supply rejection test. The LT1101 actually works at 1.8V supply with minimal degradation in performance.



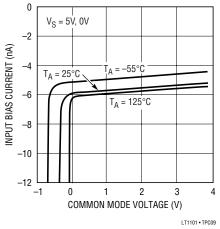

Gain = 10 Nonlinearity


Gain Error Over Temperature

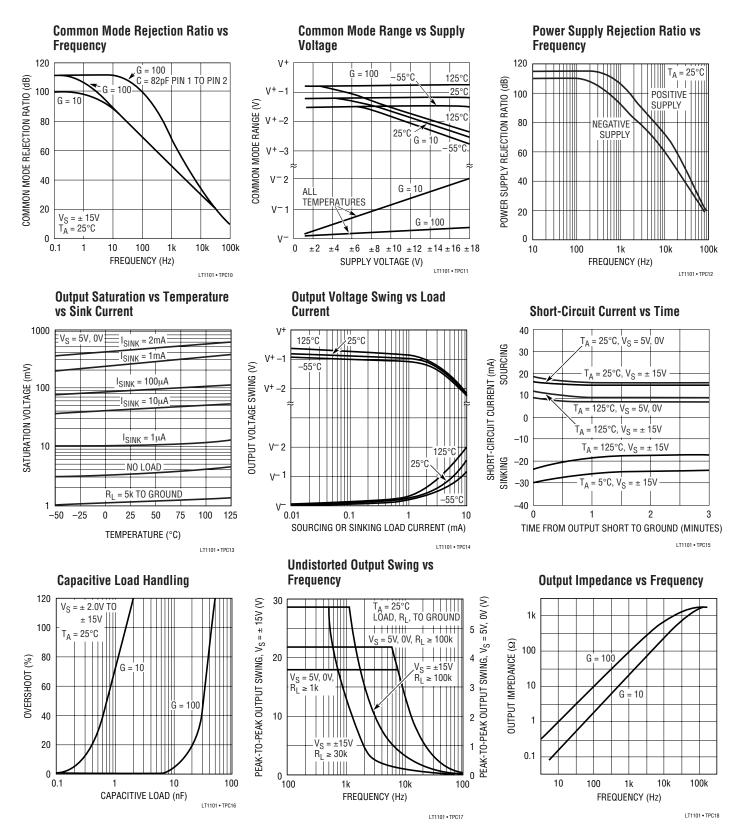
Gain Nonlinearity Temperature



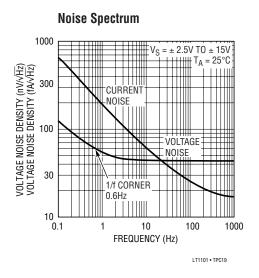
Input Offset Voltage Distribution

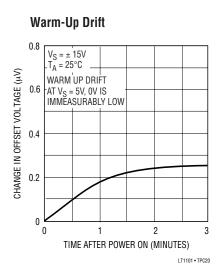


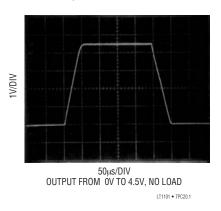
Supply Current vs Temperature 110 100 $V_{S} = \pm 15V$ SUPPLY CURRENT (µA) 90 $V_{\rm S} = 5V, 0V$ 80 70 60 50 -50 75 -25 25 50 100 125 0 TEMPERATURE (°C) LT1101 • TPC07

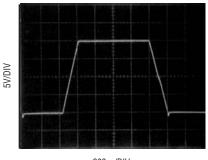

Input Bias and Offset Currents vs Temperature

Input Bias Current vs Common Mode Voltage

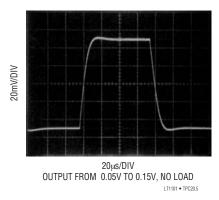


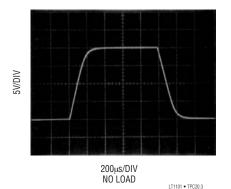




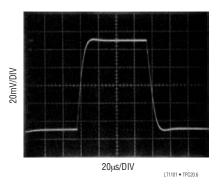


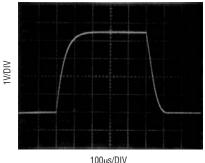
Large Signal Transient Response $G = 10, V_S = 5V, 0V$


Large Signal Transient Response $G = 10, V_S = 15V$

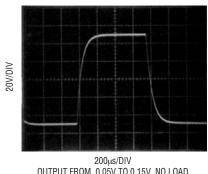

200µs/DIV NO LOAD

LT1101 • TPC20.2

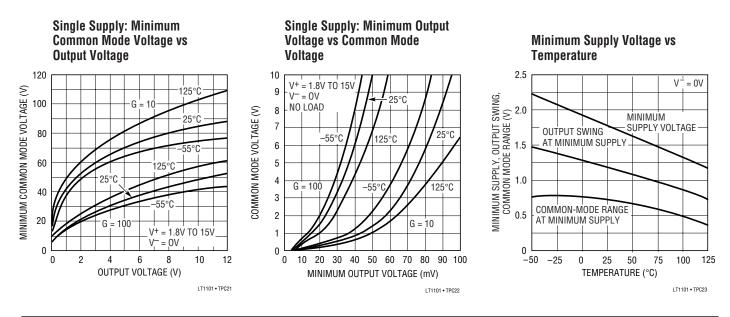



Large Signal Transient Response G = 100, V_S = $\pm 15V$

Small Signal Transient Response $G = 10, V_S = \pm 15V$



Large Signal Transient Response G = 100, V_S = 5V, 0V



100µs/DIV OUTPUT FROM OV TO 4.5V, NO LOAD

Small Signal Transient Response G = 100, V_S = 5V, 0V

OUTPUT FROM 0.05V TO 0.15V, NO LOAD (RESPONSE WITH $V_S = \pm 15V$, G = 100 IS IDENTICAL)

APPLICATIONS INFORMATION

Single Supply Applications

The LT1101 is the first instrumentation amplifier which is fully specified for single supply operation, (i.e. when the negative supply is 0V). Both the input common mode range and the output swing are within a few millivolts of ground.

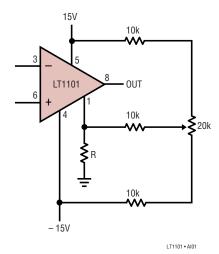
Probably the most common application for instrumentation amplifiers is amplifying a differential signal from a transducer or sensor resistance bridge. All competitive instrumentation amplifiers have a minimum required common mode voltage which is 3V to 5V above the negative supply. This means that the voltage across the bridge has to be 6V to 10V or dual supplies have to be used (i.e., micropower) single battery usage is not attainable on competitive devices.

The minimum output voltage obtainable on the LT1101 is a function of the input common mode voltage. When the common mode voltage is high and the output is low, current will flow from the output of amplifier A into the output of amplifier B. See the Minimum Output Voltage vs Common Mode Voltage plot.

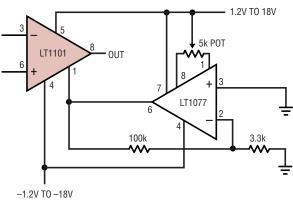
Similarly, the Single Supply Minimum Common Mode Voltage vs Output Voltage plot specifies the expected common mode range.

When the output is high and input common mode is low, the output of amplifier A has to sink current coming from the output of amplifier B. Since amplifier A is effectively in unity gain, its input is limited by its output.

Common Mode Rejection vs Frequency


The common mode rejection ratio (CMRR) of the LT1101 starts to roll off at a relatively low frequency. However, as shown on the Common Mode Rejection Ratio vs Frequency plot, CMRR can be enhanced significantly by connecting an 82pF capacitor between pins 1 and 2. This improvement is only available in the gain 100 configuration, and it is in excess of 30dB at 60Hz.

Offset Nulling


The LT1101 is not equipped with dedicated offset null terminals. In many bridge transducer or sensor applications, calibrating the bridge simultaneously eliminates the instrumentation amplifier's offset as a source of error. For example, in the Micropower Remote Temperature Sensor Application shown, one adjustment removes the offset errors due to the temperature sensor, voltage reference and the LT1101.

APPLICATIONS INFORMATION

A simple resistive offset adjust procedure is shown below. If $R = 5\Omega$ for G = 10, and $R = 50\Omega$ for G = 100, then the effect of R on gain error is approximately 0.006%. Unfortunately, about 450μ A has to flow through R to bias the reference terminal (Pin 1) and to null out the worst-case offset voltage. The total current through the resistor network can exceed 1mA, and the micropower advantage of the LT1101 is lost.

Another offset adjust scheme uses the LT1077 micropower op amp to drive the reference Pin 1. Gain error and common mode rejection are unaffected, the total current increase is 45μ A. The offset of the LT1077 is trimmed and amplified to match and cancel the offset voltage of the LT1101. Output offset null range is ± 25 mV.

LT1101 • AI02

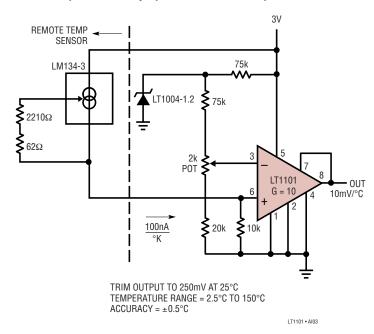
Gains Between 10 and 100

Gains between 10 and 100 can be achieved by connecting two equal resistors (= R_x) between Pins 1 and 2 and Pins 7 and 8.

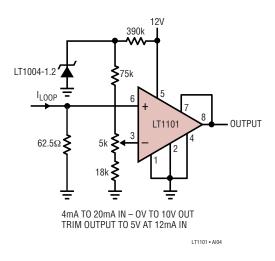
$$Gain = 10 + \frac{R_x}{R + R_x/90}$$

The nominal value of R is $9.2k\Omega$. The usefulness of this method is limited by the fact that R is not controlled to better than $\pm 10\%$ absolute accuracy in production. However, on any specific unit, 90R can be measured between Pins 1 and 2.

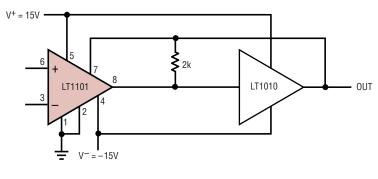
Input Protection

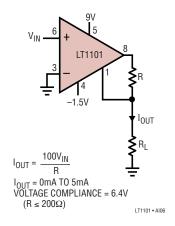

Instrumentation amplifiers are often used in harsh environments where overload conditions can occur. The LT1101 employs PNP input transistors, consequently the differential input voltage can be $\pm 30V$ (with $\pm 15V$ supplies, $\pm 36V$ with $\pm 18V$ supplies) without an increase in input bias current. Competitive instrumentation amplifiers have NPN inputs which are protected by back-to-back diodes. When the differential input voltage exceeds $\pm 1.3V$ on these competitive devices, input current increases to the milliampere level; more than $\pm 10V$ differential voltage can cause permanent damage.

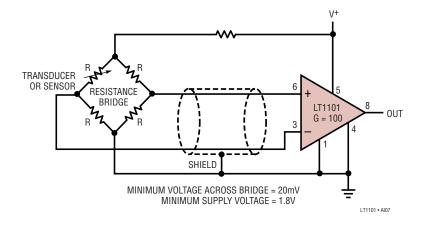
When the LT1101's inputs are pulled above the positive supply, the inputs will clamp a diode voltage above the positive supply. No damage will occur if the input current is limited to 20mA.


 500Ω resistors in series with the inputs protect the LT1101 when the inputs are pulled as much as 10V below the negative supply.

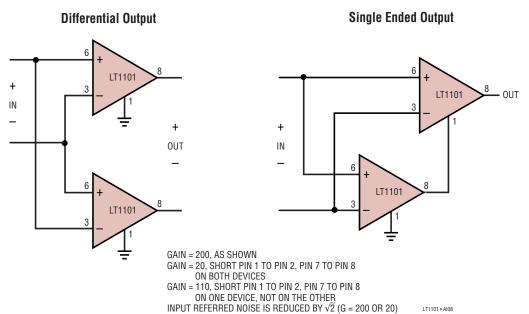
APPLICATIONS INFORMATION


Micropower, Battery Operated Remote Temperature Sensor

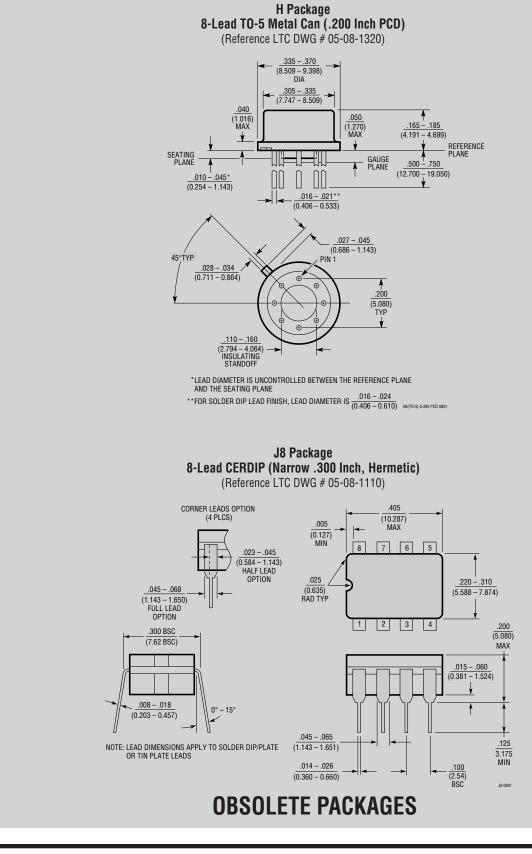

4mA to 20mA Loop Receiver


Instrumentation Amplifier with ± 150 mA Output Current

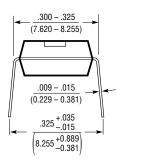
 Voltage Controlled Current Source

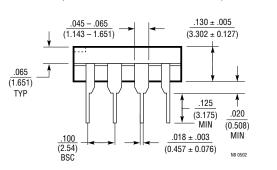


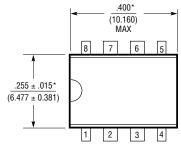
APPLICATIONS INFORMATION


Differential Voltage Amplification from a Resistance Bridge

PACKAGE DESCRIPTION

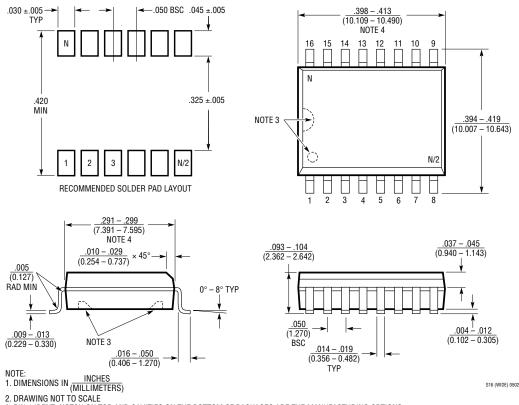



Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.


TLINEAR

PACKAGE DESCRIPTION

N8 Package 8-Lead PDIP (Narrow .300 Inch) (Reference LTC DWG # 05-08-1510)



NOTE:

INCHES

1. DIMENSIONS ARE <u>INCHES</u> 1. DIMENSIONS ARE <u>MILLIMETERS</u> *THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)

DRAWING NOT TO SCALE
 PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS. THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS
 THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)

Linear Technology Corporation 1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900 • FAX: (408) 434-0507 • www.linear.com Downloaded from <u>Elcodis.com</u> electronic components distributor

