

Agilent HLM P-4100/ 4101 T-13/4 (5 mm)
Double Heterojunction AIGaAs Very High Intensity Red LED Lamps Data Sheet

Description

These solid state LED lamps utilize newly developed double heterojunction (DH) AlGaAs/GaAs material technology. This LED material has outstanding light output efficiency over a wide range of drive currents. The lamp package has a tapered lens designed to

Features

- 1000 mcd at 20 mA
- Very high intensity at low drive currents
- Narrow viewing angle
- Outstanding material efficiency
- Low forward voltage
- CM OS/ M OS compatible
- TTL compatible
- Deep red color

Applications

- Bright ambient lighting conditions
- Emitter/ detector and signaling applications
- General use

Package Dimensions

Selection Guide

	Luminous Device HLM P.			M in.
4100	500.0	750.0	-	8
4101	700.0	1000.0	-	8
$4101-$ ST0x.	Max.	2 $\theta_{1 / 2}{ }^{[1]}$ Degree		

Note:

1. $\theta^{1 / 2}$ is the angle from optical centerline where the luminous intensity is $1 / 2$ the optical centerline value.

Part Numbering System

HLMX - 41
 echanical Option 00: Bulk

Color Bin Options

0: Full color bin distribution

Maximum Iv Bin Options
0: Open (No. max. limit)
Others: Please refer to the Iv bin Table

Minimum Iv Bin Options
Please refer to the Iv bin Table
Brightness Level
00: Lower brightness
01: Higher brightness
Notes:

1. ' 0 ' indicates no maximum intensity limit.
2. ' 0 ' indicates full color distribution.

Parameter	Maximum Rating	Units
Peak Forw ard Current ${ }^{[1,2]}$	300	mA
A verage Forw ard Current ${ }^{[2]}$	20	mA
DC Current ${ }^{[3]}$	30	mA
Power Dissipation	87	mW
Reverse Voltage ($\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$)	5	V
Transient Forw ard Current (10 $\mu \mathrm{S}$ Pulse) ${ }^{[4]}$	500	mA
Operating Temperature Range	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-55 to +100	${ }^{\circ} \mathrm{C}$
W ave Soldering Temperature [1.59 mm (0.063 in.) from body]	$250^{\circ} \mathrm{C}$ for 3 seconds	
Lead Solder Dipping Temperature [1.59 mm (0.063 in.) from body]	$260^{\circ} \mathrm{C}$ for 5 seconds	

Notes:

1. Maximum $^{\text {Peak }}$ at $\mathrm{f}=1 \mathrm{kHz}, \mathrm{DF}=6.7 \%$.
2. Refer to Figure 6 to establish pulsed operating conditions.
3. Derate linerally as shown in Figure 5.
4. The transient peak current is the maximum non-recurring peak current the device can withstand without damaging the LED die and wire bonds. It is not recommended that the device be operated at peak currents beyond the Absolute Maximum Peak Forward Current.

Electrical/ Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Description	Min.	Typ.	Max.	Unit	Test Condition
$\mathrm{V}_{\text {F }}$	Forw ard Voltage		1.8	2.2	V	20 mA
$\mathrm{V}_{\text {R }}$	Reverse Breakdown Voltage	5.0	15.0		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
$\lambda_{\text {PEAK }}$	Peak W avelength		650		nm	M easurement at peak
$\lambda_{\text {d }}$	Dominant W avelength		642		nm	Note 1
$\Delta \lambda 1 / 2$	Spectral Line Halfwidth		20		nm	
τ_{S}	Speed of Response		30		ns	Exponential Time Constant, $\mathrm{e}^{-1 / 2}$
C	Capacitance		30		pF	$\mathrm{V}_{\mathrm{F}}=0, \mathrm{f}=1 \mathrm{M} \mathrm{Hz}$
θ Oic	Thermal Resistance		220		${ }^{\circ} \mathrm{C} / \mathrm{W}$	J unction to Cathode Lead
qV	Luminous Efficacy		80		$1 \mathrm{~m} / \mathrm{W}$	Note 2

Notes:

1. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the color of the device.
2. The radiant intensity, I_{e}, in watts per steradian, may be found from the equation $\mathrm{I}_{\mathrm{e}}=\mathrm{I}_{\mathrm{v} /} \eta_{\mathrm{v}}$, where I_{v} is the luminous intensity in candelas and $\eta \mathrm{v}$ is luminous efficacy in lumens/ watt.
3. The approximate total luminous flux output within a cone angle of 2θ about the optical axis, $\phi_{V}(2 \theta)$, may be obtained from the following formula: $\phi_{v}(2 \theta)=\left[\phi_{v}(\theta) / I_{v}(0)\right] I_{v} ; W$ here: $\phi_{v}(\theta) / I_{v}(0)$ is obtained from Figure 7.

Figure 1. Relative intensity vs. w avelength.

Figure 3. Relative luminous intensity vs. dc forw ard current.

Figure 5. M aximum forw ard dc current vs. ambient temperature derating based on T_{J} MAX. $=110^{\circ} \mathrm{C}$.

Figure 2. Forw ard current vs. forw ard voltage.

Figure 4. Relative efficiency vs. peak forw ard current.

Figure 6. M aximum tolerable peak current vs. peak duration ($\mathrm{I}_{\text {PEAK }}$ MAX. determined from temperature derated I_{DC} MAX.).

Figure 7. Relative luminous intensity vs. angular displacement.

Intensity Bin Limits

Color	Bin	Intensity Range (mcd) Min.	
	P	540.0	850.0
	Q	850.0	1200.0
	R	1200.0	1700.0
	S	1700.0	2400.0
	T	2400.0	3400.0
	U	3400.0	4900.0
	V	4900.0	7100.0
	W	100.0	10200.0
	X	10200.0	14800.0
	Y	14800.0	21400.0

Tolerance for each bin limit is $\pm 18 \%$.

Mechanical Option Matrix

Mechanical Option Code	Definition
00	Bulk Packaging, minimum increment $500 \mathrm{pcs} / \mathrm{bag}$

Note:
All categories are established for classification of products. Products may not be available in all categories. Please contact your local Agilent representative for further clarification/ information.

[^0]
[^0]: w w w .agilent.com/ semiconductors
 For product information and a complete list of distributors, please go to our web site.
 For technical assistance call:
 Americas/ Canada: +1 (800) 235-0312 or (916) 788-6763

 Europe: +49 (0) 644192460
 China: 108006500017
 Hong Kong: (+65) 67562394
 India, Australia, New Zealand: (+65) 67551939
 J apan: (+81 3) 3335-8152 (Domestic/ International), or 0120-61-1280 (Domestic Only) Korea: (+65) 67551989
 Singapore, M alaysia, Vietnam, Thailand, Philippines, Indonesia: (+65) 67552044
 Taiwan: (+65) 67551843
 Data subject to change.
 Copyright © 2004 Agilent Technologies, Inc. Obsoletes 5966-0969E
 November 11, 2004
 5988-2228EN

