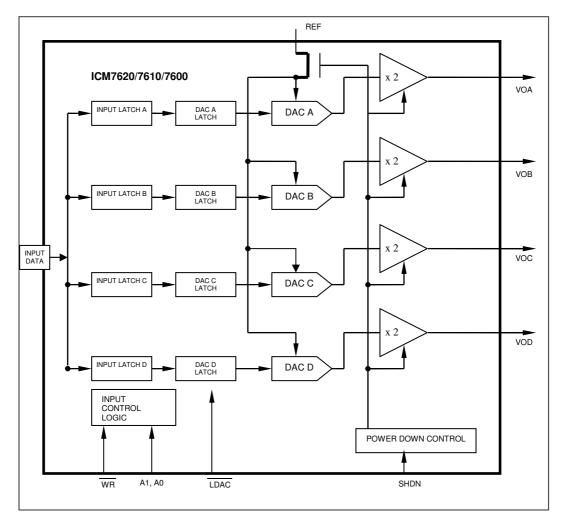


12/10/8-Bit Low Power Voltage Output Quad DACs With Parallel Interface

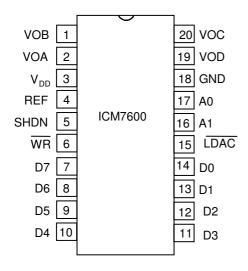
FEATURES

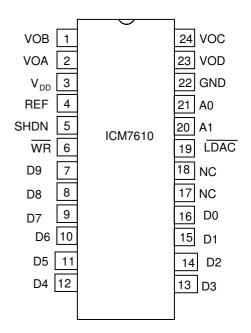
- 12/10/8-Bit Quad DAC s
- Ultra-Low Power Consumption
- Guaranteed Monotonic
- Wide Voltage Swing Output Buffer
- Parallel Interface with Double Buffered Inputs
- Shutdown Capability

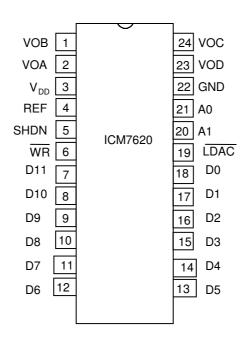
APPLICATION


- Battery-Powered Applications
- Industrial Process Control
- Digital Gain and Offset Adjustment

OVERVIEW


BLOCK DIAGRAM


The ICM7620, ICM7610 and ICM7600 are 12-Bit, 10-Bit and 8-Bit Voltage Output, Low Power, Quad DACs respectively, with guaranteed monotonic behavior. These DACs are available in 20 and 24 Lead TSSOP packages. The input interface for the devices is 12 (ICM7620), 10 (ICM7610) and 8 (ICM7600) bit parallel interface. They operate from a single supply which can range from 2.7V to 5.5V.


These DACs also offer a shutdown feature. When active, this will shutdown all DACs and would disconnect the REF input from the DACs internally. The supply current is reduced to below 10 μA in shutdown mode.

PACKAGES (20 LEAD - ICM7600, 24 LEAD TSSOP - ICM7610, ICM7620)

Rev. A7

PIN DESCRIPTION (ICM7600)

Pin	Name	I/O	Description	
1	VOB	0	DAC B Output Voltage	
2	VOA	0	DAC A Output Voltage	
3	VDD	Ι	Supply Voltage	
4	REF	I	Reference Voltage Input to All DAC	
5	SHDN	Ι	Shutdown (Active high)	
6	WR	I	Write Input (active low). Used to load input into input latch.	
7-14	D7-D0	I	Data Inputs	
15	LDAC	I	Load DAC Input (active low).	
16	A1	I	DAC Address Select Bit (MSB)	
17	A0	Ι	DAC Address Select Bit (LSB)	
18	GND	Ι	Ground	
19	VOD	0	DAC D Output Voltage	
20	VOC	0	DAC C Output Voltage	

PIN DESCRIPTION (ICM7610)

Pin	Name	I/O	Description		
1	VOB	0	DAC B Output Voltage		
2	VOA	0	DAC A Output Voltage		
3	VDD	Ι	Supply Voltage		
4	REF	Ι	Reference Voltage Input to All DAC		
5	SHDN	Ι	Shutdown (Active high)		
6	WR	Ι	Write Input (active low). Used to load input into input latch.		
17-18	NC		No connection		
7-16	D11-D0	Ι	Data Inputs		
19	LDAC	Ι	Load DAC Input (active low).		
20	A1	Ι	DAC Address Select Bit (MSB)		
21	A0	Ι	DAC Address Select Bit (LSB)		
22	GND	Ι	Ground		
23	VOD	0	DAC D Output Voltage		
24	VOC	0	DAC C Output Voltage		

PIN DESCRIPTION (ICM7620)

Pin	Name	I/O	Description	
1	VOB	0	DAC B Output Voltage	
2	VOA	0	DAC A Output Voltage	
3	VDD	I	Supply Voltage	
4	REF	I	Reference Voltage Input to All DAC	
5	SHDN	I	Shutdown (Active high)	
6	WR	I	Write Input (active low). Used to load input into input latch.	
7-18	D11-D0	I	Data Inputs	
19	LDAC	Ι	Load DAC Input (active low).	
20	A1	Ι	DAC Address Select Bit (MSB)	
21	A0	I	DAC Address Select Bit (LSB)	
22	GND	I	Ground	
23	VOD	0	DAC D Output Voltage	
24	VOC	0	DAC C Output Voltage	

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DD}	Supply Voltage	-0.3 to 7.0	V
I _{IN}	Input Current	+/- 25.0	mA
V _{IN} _	Digital Input Voltage (D0-D11, A1, A0 , WR , LDAC)	-0.3 to 7.0	V
V _{IN_REF}	Reference Input Voltage	-0.3 to 7.0	V
T _{STG}	Storage Temperature	-65 to +150	٥С
T _{SOL}	Soldering Temperature	300	٥C

Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ORDERING INFORMATION

Part	Operating Temperature Range	Package
ICM7620	-40 °C to 85 °C	24-Lead TSSOP
ICM7610	-40 °C to 85 °C	24-Lead TSSOP
ICM7600	-40 °C to 85 °C	20-Lead TSSOP

DC ELECTRICAL CHARACTERISTICS

(V_{DD} = 2.7V to 5.5V, V_{OUT} unloaded; all specifications T_{MIN} to T_{MAX} unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
DC PERFOR	MANCE					
ICM7620						
Ν	Resolution		12			Bits
DNL	Differential Nonlinearity	(Notes 1 & 3)		0.4	<u>+</u> 1.0	LSB
INL	Integral Nonlinearity	(Notes 1 & 3)		4.0	<u>+</u> 12.0	LSB
ICM7610						
Ν	Resolution		10			Bits
DNL	Differential Nonlinearity	(Notes 1 & 3)		0.1	<u>+</u> 1.0	LSB
INL	Integral Nonlinearity	(Notes 1 & 3)		1.0	<u>+</u> 3.0	LSB
ICM7600						
Ν	Resolution		8			Bits
DNL	Differential Nonlinearity	(Notes 1 & 3)		0.05	<u>+</u> 1.0	LSB
INL	Integral Nonlinearity	(Notes 1 & 3)		0.25	<u>+</u> 0.75	LSB
STATIC ACC	URACY					
GE	Gain Error				<u>+</u> 1.0	% of FS
OE	Offset Error				<u>+</u> 35	mV
POWER REC	QUIREMENTS					
V _{DD}	Supply Voltage		2.7	5	5.5	V
I _{DD}	Supply Current	Full Scale at VDD=55		300	700	μA
	Supply Current	Full Scale at VDD=3.6		200	550	μA
	Supply Current	In Shutdown		5	20	μA

DC ELECTRICAL CHARACTERISTICS (continued)

(V_{DD} = 2.7V to 5.5V, V_{OUT} unloaded; all specifications T_{MIN} to T_{MAX} unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
OUTPUT	CHARACTERISTICS					
Vout	Output Voltage Range	(Notes 2 & 3)	0		V _{DD}	V
VO _{SC}	Short Circuit Current			60	150	mA
	Output Line Regulation	V _{DD} =2.7V to 5.5V	-3.0	0.4	3.0	mV/V
LOGIC IN	PUTS					
VIH	Digital Input High	(Note 2)	$0.5 x V_{DD}$			V
VIL	Digital Input Low	(Note 2)			10.2xV _{DD}	V
	Digital Input Leakage	(Note 2)			5	μA

AC ELECTRICAL CHARACTERISTICS

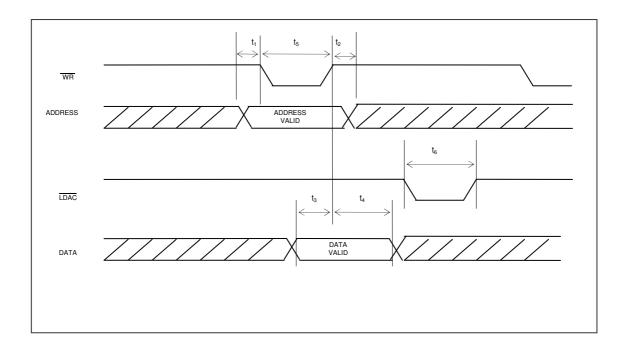
(V_{DD} = 2.7V to 5.5V, V_{OUT} unloaded; all specifications T_{MIN} to T_{MAX} unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
SR	Slew Rate			2		V/µs
	Settling Time			8		μs
	Mid-scale Transition Glitch Energy			40		nV-S

TIMING CHARACTERISTICS

(V_{DD} = 2.7V to 5.5V, all specifications T_{MIN} to T_{MAX} unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
t1	Address to WR Setup Time	(Note 2)	5			ns
t2	Address to WR Hold Time	(Note 2)	0			ns
t3	Data to WR Setup Time	(Note 2)	20			ns
t4	Data to WR Hold Time	(Note 2)	0			ns
t ₅	WR Pulse Width	(Note 2)	15			ns
t ₆	LDAC Pulse Width	(Note 2)	15			ns


Note 1: Linearity is defined from code 110 to 3990 (ICM7620) Linearity is defined from code 16 to 1023 (ICM7610)

Linearity is defined from code 4 to 255 (ICM7600)

Note 2: Guaranteed by design; not tested in production

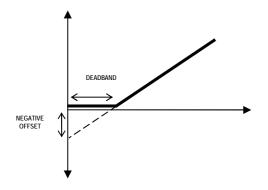
Note 3: See Applications Information

TIMING AND OPERATION DIAGRAM

LDAC WR A1 A0

LATCH STATE

APPLICATIONS INFORMATION


Power Supply Bypassing and Layout Considerations

As in any precision circuit, careful consideration has to be given to layout of the supply and ground. The return path from the GND to the supply ground should be short with low impedance. Using a ground plane would be ideal. The supply should have some bypassing on it. A 10 μ F tantalum capacitor in parallel with a 0.1 μ F ceramic with a low ESR can be used. Ideally these would be placed as close as possible to the device. Avoid crossing digital and analog signals, specially the reference, or running them close to each other.

Output Swing Limitations

The ideal rail-to-rail DAC would swing from GND to V_{DD}. However, offset and gain error limit this ability. Figure 1 illustrates how a negative offset error will affect the output. The output will limit close to ground since this is single supply part, resulting in a dead-band area. As a larger input is loaded into the DAC the output will eventually rise above ground. This is why the linearity is specified for a starting code greater than zero.

Figure 2 illustrates how a gain error or positive offset error will affect the output when it is close to V_{DD}. A positive gain error or positive offset will cause the output to be limited to the positive supply voltage resulting in a dead-band of codes close to full-scale.

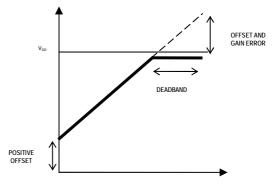
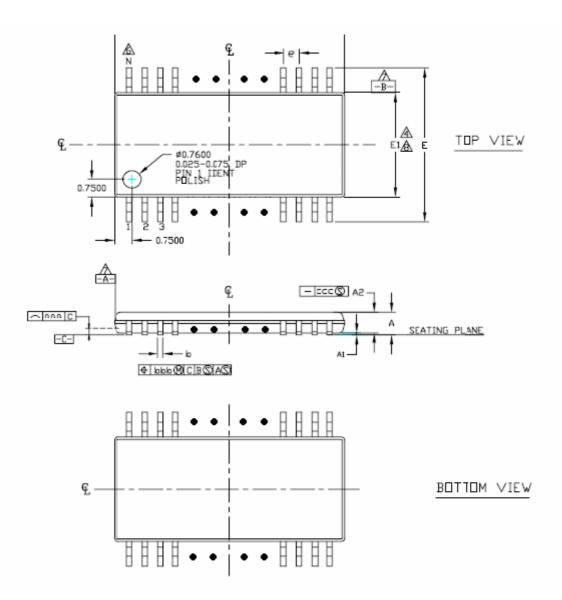
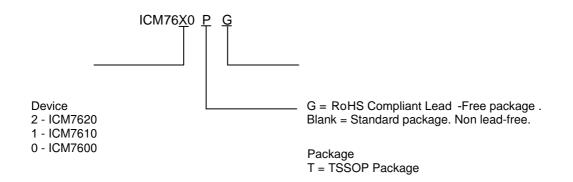



Figure 1. Effect of Negative Offset

Figure 2. Effect of Gain Error and Positive Offset

PACKAGE INFORMATION


20 Lead TSSOP, 24 Lead TSSOP

SYMBOL	20L	TSS	SOP		
S	MIN	NDM,	МАХ		
Α			1.20		
A1	0.05		0.15		
A2 D	0.80	0.90	1.05 6.6 4.5		
D	6.4 4.3	6.5 4.4	6.6		
E1 E L R	4.3		4.5		
E	6.2	6.4	6.6		
L	0.45	0.60	0.75		
R	0.09				
R1	0.09	—	—		
b	0.19	—	0.30 0.25		
b1	0.19	0.22	0.25		
С	0.09	—	0.20 0.16		
c1	0.09		0.16		
0-1 ∟1	0	—	8		
	1.	0 REF			
aaa bbb		0.10			
		0.10			
CCC	0.05				
ddd	0.20				
e N	0.65_BSC				
	20				
Ref.	Jedec Variat	MD-153 Is ion AC	ssue C		

SYMBOL	24L	TS:	SOP		
N N	MIN	NDM.	MAX		
Α			1.20		
A1	0.05		0.15		
A2 D	0.80	0.90	1.05 7.9 4.5		
D	7.7	7.8 4.4	7.9		
E1	4.3	4.4	4.5		
E	6.2	6.4	6.6		
E L R	0.45	0.60	0.75		
	0.09		—		
R1	0.09		—		
b	0.19		0.30 0.25		
b1	0.19	0.22	0.25		
С	0.09		0.20		
_⊂1	0.09		0.16		
81	0		8		
L1	1	0 REF			
<u>aaa</u>		0.10			
bbb	0.10				
CCC	0.05				
ddd		0.20			
e	0.0	65 BSC			
N		24			
Ref.	Jedec MD-153 Issue C Variation AD				

ORDERING INFORMATION

