feATURES

- Wide Input Voltage Range: 3V to 75V
- High Switch Voltage: 100V
- Low Quiescent Current: 4.5 mA
- Internal 1A Switch
- Shutdown Mode Draws Only 120 1 A Supply Current
- Isolated Flyback Regulation Mode for Fully Floating Outputs
- Can Be Externally Synchronized
- Available in MiniDIP and TO-220 Packages
- Same Pinout as LT1072

APPLICATIONS

- Telecom 5V Supply at 0.7 A from -48 V
- 90V Supply at 120 mA from 15 V
- All Applications Using LT1072 (See Below for Specification Differences)

LT1082 and LT1072 Major Specification Differences

	LT1082C	LT1072HV
$\mathrm{V}_{\text {IN }}$	3 V to 75 V	3 V to 60 V
$\mathrm{~V}_{\text {SW }}$	100 V	75 V
Switch Current Limit	1 A	1.25 A
Quiescent Current	4.5 mA	6 mA
Operating Frequency	60 kHz	40 kHz
Flyback Reference Voltage	$16.2+0.6\left(35 \mathrm{k} \Omega / \mathrm{R}_{\mathrm{FB}}\right)$	$16+0.35\left(7 \mathrm{k} \Omega / \mathrm{R}_{\mathrm{FB}}\right)$

USER NOTE: This data sheet is only intended to provide specifications, graphs, and a general functional description of the LT1082. Application circuits are included to show the capability of the LT1082. A complete design manual (AN19) and Switcher CAD (LTC Switching Power Supply Design Program) should be obtained to assist in developing new designs. This manual contains a comprehensive discussion of both the LT1070 and the external components used with it, as well as complete formulas for calculating the values of these components. The manual can also be used for the LT1082 by factoring in the lower switch current rating. Switching Voltage Regulator

DESCRIPTIOn

The LT1082 is a monolithic high voltage switching regulator. It can be operated in all standard switching configurations including buck, boost, flyback, forward, and inverting. A 1 A high efficiency switch is included on the die along with all oscillator, control, and protection circuitry.

The LT1082 operates with supply voltages from 3 V to 75 V , switch voltage up to 100 V and draws only 4.5 mA quiescent current. It can deliver load power up to 20W with no external power devices. By utilizing current-mode switching techniques, it provides excellent AC and DC load and line regulation.

An externally activated shutdown mode reduces total supply current to $120 \mu \mathrm{~A}$ typical for standby operation. Totally isolated and regulated outputs can be generated by using the optional "isolated flyback regulation mode" built into the LT1082, without the need for optocouplers or extra transformer windings.

The LT1082 has a unique feature to provide high voltage short-circuit protection. When the FB pin is pulled downto 0.6 V and the current out of the pin reaches approximately $350 \mu \mathrm{~A}$, the switching frequency will shift down from 60 kHz to 12 kHz .

The LT1082 is nearly identical to the lower voltage LT1072. For the major differences in specifications, see the table on the left.

69 TURNS OF MICROMETALS T60 TYPE 52 CORE HAS HIGHER CORE LOSS AND IS LARGER THAN NECESSARY FOR LOWER CURRENT APPLICATIONS. FOR SMALLER INDUCTORS OR HIGHER EFFICIENCY, USE A LOW LOSS CORE SUCH AS MAGNETICS INC. KOOL M OR MOLYPERMALLOY.

Telecom 5V Supply Maximum Output Current vs Input Voltage

absolute maximum ratings

Supply Voltage ... 75 VSwitch Output Voltage 100 VFeeddack Pin Voltage (Transient, 1 ms)........... $\pm 15 \mathrm{~V}$Storage Temperature Range........... $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$Lead Temperature (Soldering, 10 sec)............ $300^{\circ} \mathrm{C}$

Operating Junction Temperature Range
LT1082M $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
LT1082I $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1082C .. $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

ELECTRICFL CHARACTERIST/CS $V_{I N}=15 V, V_{C}=0.5 V, V_{F B}=V_{R E F}$, output pin open, unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$V_{\text {REF }}$	Reference Voltage	Measured at Feedback Pin $V_{C}=0.8 \mathrm{~V}$	\bullet	$\begin{aligned} & 1.224 \\ & 1.214 \end{aligned}$	$\begin{aligned} & 1.244 \\ & 1.244 \end{aligned}$	$\begin{aligned} & 1.264 \\ & 1.274 \end{aligned}$	V
IB	Feedback Input Current	$\mathrm{V}_{\mathrm{FB}}=\mathrm{V}_{\text {REF }}$	\bullet		350	$\begin{gathered} 750 \\ 1100 \end{gathered}$	nA
g_{m}	Error Amplifier Transconductance	$\Delta \mathrm{l}_{\mathrm{C}}= \pm 25 \mu \mathrm{~A}$	\bullet	$\begin{aligned} & 3000 \\ & 2400 \end{aligned}$	4400	$\begin{aligned} & 6000 \\ & 7000 \\ & \hline \end{aligned}$	$\begin{aligned} & \mu \mathrm{mho} \\ & \mu \mathrm{mho} \end{aligned}$
	Error Amplifier Source or Sink Current	$\mathrm{V}_{\mathrm{C}}=1.5 \mathrm{~V}$	\bullet	$\begin{aligned} & 150 \\ & 120 \end{aligned}$	200	$\begin{aligned} & 400 \\ & 400 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
	Error Amplifier Clamp Voltage	Hi Clamp, $\mathrm{V}_{\text {FB }}=1 \mathrm{~V}$ Lo Clamp, $\mathrm{V}_{\mathrm{FB}}=1.5 \mathrm{~V}$		$\begin{aligned} & 1.8 \\ & 0.12 \end{aligned}$	0.22	$\begin{aligned} & 2.3 \\ & 0.36 \end{aligned}$	V
	Reference Voltage Line Regulation	$3 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {MAX }}, \mathrm{V}_{\mathrm{C}}=0.8 \mathrm{~V}$	\bullet			0.03	\%/V
A_{V}	Error Amplifier Voltage Gain	$0.9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{C}} \leq 1.4 \mathrm{~V}$		350	650		V/V
	Minimum Input Voltage		\bullet		2.6	3.0	V

ELECTRICAL CHARACTERISTICS ${ }_{V_{I N}=15 v, v_{C}=0.5 v, v_{F E}=V_{R E f} \text {, output pin open, unless otherwise specified. }}^{\text {. }}$

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
I_{0}	Supply Current	$3 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{MAX}}, \mathrm{V}_{\mathrm{C}}=0.6 \mathrm{~V}$			4.5	7.0	mA
	Control Pin Threshold	Duty Cycle $=0$	\bullet	$\begin{aligned} & 0.7 \\ & 0.5 \end{aligned}$	0.9	$\begin{aligned} & 1.1 \\ & 1.25 \end{aligned}$	V
	Normal/Flyback Threshold on Feedback Pin			0.58	0.67	0.8	V
f	Switching Frequency		\bullet	$\begin{aligned} & 50 \\ & 45 \end{aligned}$	60	$\begin{aligned} & 70 \\ & 75 \end{aligned}$	kHz kHz
		$800 \mu \mathrm{~A} \geq \mathrm{I}_{\text {FB }} \geq 450 \mu \mathrm{~A}$			12		kHz
BV	Output Switch Breakdown Voltage	$3 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {MAX }}, \mathrm{I}_{\text {SW }}=1.5 \mathrm{~mA}$	\bullet	100	115		V
	Control Voltage to Switch Current Transconductance				1.5		A/V
$V_{\text {FB }}$	Flyback Reference Voltage	$\mathrm{I}_{\text {FB }}=60 \mu \mathrm{~A}$	\bullet	$\begin{aligned} & 17 \\ & 16 \end{aligned}$	18.6	$\begin{aligned} & 20.5 \\ & 21.5 \end{aligned}$	V
	Change in Flyback Reference Voltage	$60 \mu \mathrm{~A} \leq \mathrm{I}_{\text {FB }} \leq 200 \mu \mathrm{~A}$		3.5	4.6	6.5	V
	Flyback Reference Voltage Line Regulation	$\mathrm{I}_{\text {FB }}=60 \mu \mathrm{~A}, 3 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {MAX }}$			0.01	0.03	\%/V
	Flyback Amplifier Transconductance (g_{m})	$\Delta \mathrm{l}_{\mathrm{C}}= \pm 10 \mu \mathrm{~A}$		150	300	500	$\mu \mathrm{mho}$
	Flyback Amplifier Source and Sink Current	$\begin{aligned} & \mathrm{V}_{\mathrm{C}}=0.6 \mathrm{~V} \text { Source } \\ & \mathrm{I}_{\mathrm{FB}}=60 \mu \mathrm{~A} \text { Sink } \end{aligned}$		$\begin{aligned} & 15 \\ & 30 \end{aligned}$	$\begin{aligned} & 32 \\ & 50 \end{aligned}$	$\begin{aligned} & 70 \\ & 90 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\mathrm{V}_{\text {SAT }}$	Output Switch "On" Resistance (Note 1)	$\mathrm{I}_{\text {SW }}=0.7 \mathrm{~A}\left(\mathrm{LT1082C)}\right.$, $\mathrm{I}_{\text {SW }}=0.5 \mathrm{~A}(\mathrm{LT1082M})$	\bullet		0.8	1.2	Ω
ILIM	Switch Current Limit (LT1082C)	Duty Cycle $=20 \%$ Duty Cycle $\leq 50 \%$ Duty Cycle $=80 \%$ (Note 2)	$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \end{aligned}$	$\begin{aligned} & 1.07 \\ & 1.0 \\ & 0.8 \\ & \hline \end{aligned}$		$\begin{aligned} & 2.6 \\ & 2.6 \\ & 2.4 \\ & \hline \end{aligned}$	A
	Switch Current Limit (LT1082I)	Duty Cycle $=20 \%$ Duty Cycle $\leq 50 \%$ Duty Cycle $=80 \%$ (Note 2)	$\stackrel{\bullet}{\bullet}$	$\begin{aligned} & \hline 0.85 \\ & 0.8 \\ & 0.65 \\ & \hline \end{aligned}$		$\begin{aligned} & 2.8 \\ & 2.8 \\ & 2.6 \\ & \hline \end{aligned}$	A A A
	Switch Current Limit (LT1082M)	Duty Cycle $=20 \%$ Duty Cycle $\leq 50 \%$ Duty Cycle $=80 \%$ (Note 2)	$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \end{aligned}$	$\begin{aligned} & 0.75 \\ & 0.7 \\ & 0.6 \\ & \hline \end{aligned}$		$\begin{aligned} & 3.0 \\ & 3.0 \\ & 2.8 \\ & \hline \end{aligned}$	A A A
$\frac{\overline{\Delta l_{\mathrm{IN}}}}{\left.\Delta\right\|_{\mathrm{SW}}}$	Supply Current Increase During Switch-On Time				35	45	mA / A
$\mathrm{DC}_{\text {max }}$	Maximum Switch Duty Cycle			85	92	97	\%
	Flyback Sense Delay Time				1.5		$\mu \mathrm{S}$
	Shutdown Mode Supply Current	$3 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {MAX }}, \mathrm{V}_{\mathrm{C}}=0.05 \mathrm{~V}$			120	350	$\mu \mathrm{A}$
	Shutdown Mode Threshold Voltage	$3 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {MAX }}$	\bullet	$\begin{aligned} & 70 \\ & 50 \end{aligned}$	150	$\begin{aligned} & 250 \\ & 300 \end{aligned}$	mV mV

The - denotes the specifications which apply over the operating temperature range.
Note 1: Measured with V_{C} in hi clamp, $\mathrm{V}_{\mathrm{FB}}=0.8 \mathrm{~V}$.

Note 2: For duty cycles (DC) between 50% and 80%, minimum guaranteed switch current decreases linearly.

TYPICAL PERFORMANCE CHARACTERISTICS

Suggested Core Size and Inductance for Telecom 5 V Supply

LOAD CURRENT	TYPE 52 POWDERED IRON	KOOL M μ OR MOLY- PERMALLOY
100 mA	T38 $250 \mu \mathrm{H}$	T38 $200 \mu \mathrm{H}$
200 mA	T50 $250 \mu \mathrm{H}$	T38 $150 \mu \mathrm{H}$
400 mA	T60 $250 \mu \mathrm{H}$	T50 $150 \mu \mathrm{H}$
600 mA	T60 $250 \mu \mathrm{H}$	T50 $200 \mu \mathrm{H}$
800 mA	T80 $350 \mu \mathrm{H}$	T80 $350 \mu \mathrm{H}$

NOTE: THIS GRAPH IS BASED ON LOW CORE LOSS PERMALLOY INDUCTOR. IF POWDERED IRON CORE INDUCTOR IS USED, THE CORE LOSS IS TYPICALLY 100 mW HIGHER.

Switch Current Limit

1082603

Telecom 5V Supply Short-Circuit Frequency Shift-Down

1082 G02

Maximum Duty Cycle

1082605

TYPICAL PGRFORmANCE CHARACTERISTICS

Feedback Bias Current vs
Temperature

1082 G12

Reference Voltage and Switching Frequency vs Temperature

Line Regulation

Shutdown Mode Supply Current

1082617

Supply Current vs Supply Voltage (Shutdown Mode)

Driver Current* vs Switch Current

* AVERAGE SUPPLY CURRENT
$=\mid \quad Q+D C\left(2.9+10^{-2} I_{S W}+10^{-5} I_{S W}{ }^{2}\right)$
$I_{Q}=$ QUIESCENT CURRENT, DC = DUTY CYCLE,

**UNDER VERY LOW OUTPUT CURRENT CONDITIONS, DUTY CYCLE FOR MOST CIRCUITS WILL APPROACH 10\% OR LESS.

TYPICAL PGRFORmANCE CHARACTERISTICS

1082 G21

1082 G23

Switch "Off" Characteristics

Transconductance of Error Amplifier

BLOCK DIAGRAM

OPERATION

The LT1082 is a current mode switcher. This means that switch duty cycle is directly controlled by switch current rather than by output voltage. Referring to the block diagram, the switch is turned "on" at the start of each oscillator cycle. It is turned "off" when switch current reaches a predetermined level. Control of output voltage is obtained by using the output of a voltage sensing error amplifier to set current trip level. This technique has several advantages. First, it has immediate response to input voltage variations, unlike ordinary switchers which have notoriously poor line transient response. Second, it reduces the 90° phase shift at mid-frequencies in the energy storage inductor. This greatly simplifies closedloop frequency compensation under widely varying input voltage or output load conditions. Finally, it allows simple pulse-by-pulsecurrent limiting to provide maximum switch protection under output overload or short conditions. A

Iow dropout internal regulator provides a 2.3 V supply for all internal circuitry on the LT1082. This low dropout design allows input voltage to vary from 3 V to 75 V with virtually no change in device performance. A 60 kHz oscillator is the basic clock for all internal timing. It turns "on" the output switch via the logic and driver circuitry. Special adaptive anti-sat circuitry detects onset of saturation in the power switch and adjusts driver current instantaneously to limit switch saturation. This minimizes driver dissipation and provides very rapid turn-off of the switch.

A 1.2V bandgap reference biases the positive input of the error amplifier. The negative input is brought out for output voltage sensing. This feedback pin has a second function: when pulled low with an external resistor and with $I_{F B}$ of $60 \mu \mathrm{~A}$ to $200 \mu \mathrm{~A}$, it programs the LT1082 to

operation

disconnect the main error amplifier output and connects the output of the flyback amplifier to the comparator input. The LT1082 will then regulate the value of the flyback pulse with respect to the supply voltage. This flyback pulse is directly proportional to output voltage in the traditional transformer coupled flyback topology regulator. By regulating the amplitude of the flyback pulse, the output voltage can be regulated with no direct connection between input and output. The output is fully floating up to the breakdown voltage of the transformer windings. Multiple floating outputs are easily obtained with additional windings. A special delay network inside the LT1082 ignores the leakage inductance spike at the leading edge of the flyback pulse to improve output regulation.

When $I_{\text {FB }}$ drawn out of the FB pin reaches $350 \mu \mathrm{~A}$, the LT1082 shifts the switching frequency down to 12 kHz . This unique feature provides high voltage short-circuit protection in systems like the telecom 5 V supplies with input voltages down to -70V; lower frequency is needed under short-circuit conditions with current mode switchers because minimum "on" time cannot be forced below the internally set blanking time. Referring to the telecom 5 V supply circuit on the front page, with output shorted to ground, the $V_{F B}$ stays at 0.6 V when sourcing I_{FB} up to 1 mA . If the FB pin is forced to source more than 1 mA , the frequency shifting function may be defeated. Therefore, the minimum suggested value for R_{FB} is 1 k and the maximum suggested value is 1.2 k . Also, no capacitance more than 1 nF should be used on the FB pin, because it may cause unstable switching frequency in this low frequency mode.

The error signal developed at the comparator input is brought out externally. This pin $\left(V_{C}\right)$ has four different functions. It is used for frequency compensation, current limitadjustment, softstarting, and total regulator shutdown. During normal regulator operation this pin sits at a voltage between 0.9 V (low output current) and 2 V (high output current). The error amplifiers are current output (g_{m}) types, so this voltage can be externally clamped for adjusting current limit. Likewise, a capacitor-coupled external clamp will provide soft start. Switch duty cycle goes to zero if the V_{C} pin is pulled to ground through a diode, placing the LT1082 in an idle mode. Pulling the V_{C} pin below 0.15 V causes total regulator shutdown, with
only $120 \mu \mathrm{~A}$ supply current for shutdown circuitry biasing. See AN19 for full application details.

Extra Pins on the MiniDIP Packages

The miniDIP LT1082 has the emitters of the power transistor brought out separately from the ground pin. This eliminates errors due to ground pin voltage drops and allows the user to reduce switch current limit by a factor of $2: 1$ by leaving the second emitter (E2) disconnected. The first emitter (E1) should always be connected to the ground pin. Note that switch "on" resistance doubles when E2 is left open, so efficiency will suffer somewhat when switch currents exceed 100 mA . Also, note that chip dissipation will actually increase with E2 open during normal load operation, even though dissipation in current limit mode will decrease. See "Thermal Considerations."

Thermal Considerations When Using the MiniDIP Packages

The low supply current and high switch efficiency of the LT1082 allow it to be used without a heat sink in most applications when the TO-220 package is selected.

This package is rated at $50^{\circ} \mathrm{C} / \mathrm{W}$. The miniDIPs, however, are rated at $100^{\circ} \mathrm{C} / \mathrm{W}$ in ceramic (J) and $90^{\circ} / \mathrm{W}$ in plastic (N).

Care should be taken for miniDIP applications to ensure that the worst case input voltage and load current conditions do not cause excessive die temperatures. The following formulas can be used as a rough guide to calculate LT1082 power dissipation. For more details, the reader is referred to Application Note 19 (AN19), "Efficiency Calculations" section.

Average supply current (including driver current) is:

$$
I_{\mathrm{N}} \approx 4.5 \mathrm{~mA}+\mathrm{I}_{\mathrm{SW}}(0.004+\mathrm{DC} / 28)
$$

$I_{\text {SW }}=$ switch current
DC = switch duty cycle
Switch power dissipation is given by:

$$
\mathrm{P}_{\mathrm{SW}}=\left(\mathrm{I}_{\mathrm{SW}}\right)^{2} \cdot \mathrm{R}_{\mathrm{SW}} \bullet \mathrm{DC}
$$

$R_{S W}=$ LT1082 switch "on" resistance (1.2 2Ω maximum)

operation

Total power dissipation is the sum of supply current times input voltage plus switch power:

$$
\mathrm{P}_{\mathrm{TOT}}=\left(\mathrm{I}_{\mathrm{IN}}\right)\left(\mathrm{V}_{\text {IN }}\right)+\mathrm{P}_{\mathrm{SW}}
$$

In a typical example, using negative-to-positive converter to generate 5 V at 0.5 A from a -45 V input, duty cycle is approximately 12%, and switch current is about 0.5 A , yielding:

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{IN}}=4.5 \mathrm{~mA}+0.5(0.004+\mathrm{DC} / 28)=8.7 \mathrm{~mA} \\
& \mathrm{P}_{\text {SW }}=(0.5)^{2} \cdot 1.2 \Omega \cdot(0.12)=0.036 \mathrm{~W} \\
& \mathrm{P}_{\text {TOT }}=(45 \mathrm{~V})(8.7 \mathrm{~mA})+0.036=0.43 \mathrm{~W}
\end{aligned}
$$

Temperature rise in a plastic miniDIP would be $90^{\circ} \mathrm{C} / \mathrm{W}$ times 0.43 W , or approximately $39^{\circ} \mathrm{C}$. The maximum ambient temperature would be limited to $100^{\circ} \mathrm{C}$ (commercial temperature limit) minus $39^{\circ} \mathrm{C}$, or $61^{\circ} \mathrm{C}$.

In most applications, full load current is used to calculate die temperature. However, if overload conditions must also be accounted for, four approaches are possible. First, if loss of regulated output is acceptable under overload conditions, the internal thermal limit of the LT1082 will protect the die in most applications by shutting off switch current. Thermal limit is not a tested parameter, however, and should be considered only for noncritical applications with temporary overloads. A second approach is to use the larger T0-220 (T) package which, even without a heat sink, may limit die temperatures to safe levels under overload conditions. In critical situations, heat sinking of these packages is required; especially if overload conditions must be tolerated for extended periods of time.
The third approach for lower current applications is to leave the second switch emitter (miniDIP only) open. This increases switch "on" resistance by 2:1, but reduces switch current limit by 2:1 also, resulting in a net $2: 1$ reduction in $I^{2} R$ switch dissipation under current limit conditions.
The fourth approach is to clamp the V_{C} pin to a voltage less than its internal clamp level of 2 V . The LT1082 switch current limit is zero at approximately 1 V on the V_{C} pin and 1.6 A at 2 V on the V_{C} pin. Peak switch current can be externally clamped between these two levels with a diode. See AN19 for details.

LT1082 Synchronizing

The LT1082 can be externally synchronized in the frequency range of 75 kHz to 90 kHz . This is accomplished as shown in the accompanying figures. Synchronizing occurs when the V_{C} pin is pulled to ground with an external transistor. To avoid disturbing the DC characteristics of the internal error amplifier, the width of the synchronizing pulse should be under $1 \mu \mathrm{~s}$. C2 sets the pulse width at \approx $0.6 \mu \mathrm{~s}$. The effect of a synchronizing pulse on the LT1082 amplifier offset can be calculated from:

$$
\Delta V_{O S}=\frac{\left(\frac{K T}{q}\right)\left(\mathrm{t}_{\mathrm{s}}\right)\left(\mathrm{f}_{\mathrm{S}}\right)\left(\mathrm{I}_{\mathrm{C}}+\frac{\mathrm{V}_{\mathrm{C}}}{\mathrm{R} 3}\right)}{\mathrm{I}_{\mathrm{C}}}
$$

$\mathrm{KT} / \mathrm{q}=26 \mathrm{mV}$ at $25^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{S}}=$ pulse width
$\mathrm{f}_{\mathrm{S}}=$ pulse frequency
$I_{C}=\mathrm{LT1082} \mathrm{~V}_{\mathrm{C}}$ source current $(\approx 200 \mu \mathrm{~A})$
$\mathrm{V}_{\mathrm{C}}=\mathrm{LT} 1082$ operating V_{C} voltage (1 V to 2 V)
R3 $=$ resistor used to set mid-frequency "zero" in LT1082 frequency compensation network.
With $\mathrm{t}_{\mathrm{S}}=0.6 \mu \mathrm{~S}, \mathrm{f}_{\mathrm{S}}=80 \mathrm{kHz}, \mathrm{V}_{\mathrm{C}}=1.5 \mathrm{~V}$, and $\mathrm{R} 3=2 \mathrm{k}$, offset voltage shift is $\approx 5 \mathrm{mV}$. This is not particularly bothersome, but note that high offset could result if R3 were reduced to a much lower value. Also, the synchronizing transistor must sink higher currents with low values of R3, so larger drives may have to be used. The transistor must be capable of pulling the V_{C} pin to within 100 mV of ground to ensure synchronizing.

Synchronizing the LT1082

TYPICAL APPLICATIONS

Totally Isolated Converter

Boost Converter

PACKAGE DESCRIPTION Dimensions in inches (milimeters) unless otherwise noted.

J8 Package 8-Lead Ceramic DIP

N8 Package
8-Lead Plastic DIP

$\underset{\text { 5-Lead Plastic DD }}{\text { Q Package }}$

PACKACE DESCRIPTIOM Dimensions in inches (milimeters) unless otherwise noted.

T Package
5-Lead TO-220

