LT1019 Precision Reference

FEATURES

- Tight Initial Output Voltage: < 0.05\%
- Ultralow Drift: 3ppm/ ${ }^{\circ} \mathrm{C}$ Typical
- Series or Shunt Operation
- Curvature Corrected
- Ultrahigh Line Rejection: $\approx 0.5 \mathrm{ppm} / \mathrm{V}$
- Low Output Impedance: $\approx 0.02 \Omega$
- Plug-In Replacement for Present References
- Available at $2.5 \mathrm{~V}, 4.5 \mathrm{~V}, 5 \mathrm{~V}$, and 10 V
- 100% Noise Tested
- Temperature Output
- Industrial Temperature Range in SO-8

APPLICATIONS

- Negative Shunt References
- A/D and D/A Converters
- Precision Regulators
- Constant Current Sources
- V/FConverters
- Bridge Excitation

DESCRIPTIO

The LT ${ }^{\circledR} 1019$ is a third generation bandgap voltage reference utilizing thin film technology and a greatly improved curvature correction technique. Wafer level trimming of both reference and output voltage combines to produce units with high yields to very low TC and tight initial tolerance of output voltage.

TheLT1019 can both sink and sourceup to 10mA and can beused in either the series or shunt mode. This allows the referenceto be used for both positive and negativeoutput voltages without external components. Minimum input/ output voltageis lessthan 1Vintheseriesmode, providing improved tolerance of low line conditions.

The LT1019 is available in four voltages: $2.5 \mathrm{~V}, 4.5 \mathrm{~V}, 5 \mathrm{~V}$ and 10 V . It is a direct replacement for most bandgap references presently available including AD580, AD581, REF-01, RE-02, MC1400, MC1404 and LM168.

TYPICAL APPLICATIOn

Output Voltage Drift

ABSO LUTE MAXIMUM RATING S (Note 1)

Input Voltage \qquad40VOutput Voltage (Note2)LT1019-5, LT1019-10
\qquad16 V
LT1019-2.5, LT1019-4.5 7 V
Output Short-Circuit Duration (Note2)$\mathrm{V}_{\text {IN }}<20 \mathrm{~V}$.
\qquad Indefinite
$20 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 35 \mathrm{~V}$ 10 secSpecified Temperature RangeCommercial
\qquad $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Industrial ... $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$Military$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Trim Pin Voltage $\pm 30 \mathrm{~V}$
Temp Pin Voltage 5 V
Storage Temperature Range (Note 11) $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$Lead Temperature (Soldering, 10 sec)$300^{\circ} \mathrm{C}$

PACKAG E/O RDER INFORMATIO

 8-LEAD TO-5 METAL CAN *IITRNALLY CONNECTID. DONOT COMNECT EXTRNALLY				8 DNC* 7 DNC 6 anpur 5 TRIM D. Donot $30^{\circ} \mathrm{C}$ w
ORDER PART NUMBER	ORDER PART NUMBER		ORDAPART NUMBER	S8 PART MARKING
LT1019ACH-2.5 LT1019CH-2.5	LT1019ACN8-2.5 LT1019CN8-5		LT1019ACS8-2.5	19 A 25
LT1019ACH-4.5 LT1019CH-4.5	LT1019ACN8-4.5 LT1019CN8-10		LT1019ACS8-5	19 A05
LT1019ACH-5 LT1019CH-5	LT1019ACN8-5 LT1019IN8-2.5		LT1019AIS8-2.5	19Al2
LT1019ACH-10 LT1019CH-10	LT1019ACN8-10	LT1019IN8-4.5	LT1019AIS8-5	19Al5
LT1019AMH-2.5 LT1019MH-2.5	LT1019CN8-2.5	LT1019IN8-5	LT1019CS8-2.5	1925
LT1019AMH-4.5 LT1019MH-4.5	LT1019CN8-4.5	LT1019IN8-10	LT1019CS8-4.5	1945
LT1019AMH-5 LT1019MH-5			LT1019CS8-5	1905
LT1019AMH-10 LT1019MH-10			LT1019CS8-10	1910
			LT1019IS8-2.5	19125
			LT1019IS8-5	19105

AVAILABLE OPTIO NS

OUTPUT VOLTAGE (V)	temperature (${ }^{\circ} \mathrm{C}$)	aCCURACY (\%)	TEMPERATURE COEFFICIENT (ppm $/{ }^{\circ} \mathrm{C}$)	PACKAGE TYPE		
				$\begin{gathered} \hline \text { TO-5 } \\ \text { H8 } \end{gathered}$	$\begin{gathered} \hline \text { SO-8 } \\ \text { S8 } \end{gathered}$	$\begin{gathered} \hline \text { PDIP-8 } \\ \text { N8 } \end{gathered}$
2.5	0 to 70	$\begin{gathered} \hline 0.05 \\ 0.2 \end{gathered}$	$\begin{gathered} 5 \\ 20 \end{gathered}$	LT1019ACH-2.5 LT1019CH-2.5	LT1019ACS8-2.5 LT1019CS8-2.5	LT1019ACN8-2.5 LT1019ON8-2.5
	-40 to 85	$\begin{gathered} 0.05 \\ 0.2 \end{gathered}$	$\begin{aligned} & 10 \\ & 20 \end{aligned}$		LT1019AIS8-2.5 LT1019IS8-2.5	LT10191N8-2.5
	-55 to 125	$\begin{gathered} 0.05 \\ 0.2 \end{gathered}$	$\begin{aligned} & 10 \\ & 25 \end{aligned}$	LT1019AMH-2.5 LT1019MH-2.5		
4.5	0 to 70	$\begin{gathered} 0.05 \\ 0.2 \end{gathered}$	$\begin{gathered} 5 \\ 20 \end{gathered}$	LT1019ACH-4.5 LT1019CH-4.5	LT1019CS8-4.5	LT1019ACN8-4.5 LT1019CN8-4.5
	-40 to 85	0.2	20			LT10191N8-4.5
	-55 to 125	$\begin{gathered} 0.05 \\ 0.2 \end{gathered}$	$\begin{aligned} & 10 \\ & 25 \end{aligned}$	LT1019AMH-4.5 LT1019MH-4.5		
5	0 to 70	$\begin{gathered} 0.05 \\ 0.2 \end{gathered}$	$\begin{gathered} 5 \\ 20 \end{gathered}$	$\begin{aligned} & \text { LT1019ACH-5 } \\ & \text { LT1019CH-5 } \end{aligned}$	LT1019ACS8-5 LT1019CS8-5	LT1019ACN8-5 LT1019CN8-5
	-40 to 85	$\begin{gathered} 0.05 \\ 0.2 \end{gathered}$	$\begin{aligned} & 10 \\ & 20 \end{aligned}$		LT1019AIS8-5 LT1019IS8-5	LT1019IN8-5
	-55 to 125	$\begin{gathered} 0.05 \\ 0.2 \end{gathered}$	$\begin{aligned} & \hline 10 \\ & 25 \end{aligned}$	LT1019AMH-5 LT1019MH-5		
10	0 to 70	$\begin{gathered} 0.05 \\ 0.2 \end{gathered}$	$\begin{gathered} 5 \\ 20 \end{gathered}$	$\begin{aligned} & \text { LT1019AQ-10 } \\ & \text { LT1019CH-10 } \end{aligned}$	LT1019CS8-10	LT1019ACN8-10 LT1019CN8-10
	-40 to 85	0.2	20			LT10191N8-10
	-55 to 125	$\begin{gathered} 0.05 \\ 0.2 \end{gathered}$	$\begin{aligned} & 10 \\ & 25 \end{aligned}$	$\begin{aligned} & \text { LT1019AMH-10 } \\ & \text { LT1019MH-10 } \end{aligned}$		

ELECTRICAL CHARACTERISTICS

The \bullet denotes specifications which apply over the full operating temperature range, otherwise specifications are $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
$\mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}=0$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		LT1019A			LT1019			
				MIN	TYP	MAX	MIN	TYP	MAX	UNITS
	Output Voltage Tolerance				0.02	0.05		0.02	0.2	\%
TC	Output Voltage Temperature Coefficient (Note3)	LT1019C ($0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$) LT10191 ($-40^{\circ} \mathrm{Cto} 85^{\circ} \mathrm{C}$) LT1019M ($-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$)	\bullet		$\begin{aligned} & 3 \\ & 3 \\ & 5 \end{aligned}$	$\begin{gathered} 5 \\ 10 \\ 10 \end{gathered}$		$\begin{aligned} & 5 \\ & 5 \\ & 8 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$
$\frac{\Delta \mathrm{V}_{\mathrm{OU}}}{\Delta \mathrm{~V}_{\mathrm{IN}}}$	Line Regulation (Note 4)	$\left(\mathrm{V}_{\text {OUT }}+1.5 \mathrm{~V}\right) \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}$	\bullet		$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 3 \\ & 5 \end{aligned}$		$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 3 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{ppm} / \mathrm{V} \\ & \mathrm{ppm} / \mathrm{V} \end{aligned}$
RR	Ripple Rejection	$50 \mathrm{~Hz} \leq \mathrm{f} \leq 400 \mathrm{~Hz}$	\bullet	$\begin{aligned} & 90 \\ & 84 \end{aligned}$	110		$\begin{aligned} & 90 \\ & 84 \end{aligned}$	110		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$

ELECTRICAL CHARACTERISTICS

The \bullet denotes specifications which apply over the full operating temperature range, otherwise specifications are $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
$\mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}$, I IOUT $=0$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		LTC1019A			LTC1019			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
$\Delta \mathrm{V}_{\text {OUT }}$	Load Regulation Series	$0 \leq \mathrm{l}_{\text {Or }} \leq 10 \mathrm{~mA}$ (Note 5)			0.02	0.05		0.02	0.05	$\mathrm{mV} / \mathrm{mA}(\Omega)$
人 ${ }_{\text {lour }}$	Mode (Notes 4, 5)		\bullet			0.08			0.08	$\mathrm{mV} / \mathrm{mA}(\Omega)$
	Load Regulation, Shunt Mode	$\begin{aligned} & 1 \mathrm{~mA} \leq \mathrm{I}_{\text {SHUNT }} \leq 10 \mathrm{~mA}(\text { Notes } 5,6) \\ & 2.5 \mathrm{~V}, 4.5 \mathrm{~V}, 5 \mathrm{~V} \\ & 10 \mathrm{~V} \end{aligned}$	\bullet		0.1	$\begin{aligned} & 0.4 \\ & 0.8 \end{aligned}$		0.1	$\begin{aligned} & 0.4 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \mathrm{mV} / \mathrm{mA}(\Omega) \\ & \mathrm{mV} / \mathrm{mA}(\Omega) \end{aligned}$
	Thermal Regulation (Note 7)	$\Delta \mathrm{P}=200 \mathrm{~mW}, \mathrm{t}=50 \mathrm{~ms}$			0.1	0.5		0.1	0.5	ppm/mW
I_{Q}	Quiescent Qurrent Series Mode		\bullet		0.65	$\begin{aligned} & 1.0 \\ & 1.3 \end{aligned}$		0.65	$\begin{aligned} & 1.2 \\ & 1.5 \end{aligned}$	mA mA
	Minimum Shunt Ourrent	(Note 8)	\bullet		0.5	0.8		0.5	0.8	mA
	Minimum Input/Output Voltage Differential	$\begin{aligned} & \text { lor } \leq 1 \mathrm{~mA} \\ & l_{\text {ar }}=10 \mathrm{~mA} \end{aligned}$	\bullet		0.9	$\begin{aligned} & 1.1 \\ & 1.3 \\ & \hline \end{aligned}$		0.9	$\begin{aligned} & 1.1 \\ & 1.3 \\ & \hline \end{aligned}$	V
	Trim Range	LT1019-2.5 LT1019-5 LT1019-10		$\begin{aligned} & \pm 3.5 \\ & \pm 3.5 \\ & \pm 3.5 \end{aligned}$	$\begin{gathered} \pm 6 \\ 5,-13 \\ 5,-27 \end{gathered}$		$\begin{aligned} & \pm 3.5 \\ & \pm 3.5 \\ & \pm 3.5 \end{aligned}$	$\begin{gathered} \pm 6 \\ 5,-13 \\ 5,-27 \end{gathered}$		\%
ISC	Short-Qircuit Qurrent Output Connected to GND	$2 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 35 \mathrm{~V}$	\bullet	$\begin{aligned} & 15 \\ & 10 \end{aligned}$	25	50	$\begin{aligned} & 15 \\ & 10 \end{aligned}$	25	50	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
e_{n}	Output Voltage Noise (Note 10)	$\begin{aligned} & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 1 \mathrm{kHz} \\ & 0.1 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{~Hz} \end{aligned}$			$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	4		$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	4	$\begin{gathered} \mathrm{ppm}(\mathrm{RMS}) \\ \mathrm{ppm}(\mathrm{P}-\mathrm{P}) \end{gathered}$

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: These are high power conditions and are therefore guaranteed only at temperatures equal to or below $70^{\circ} \mathrm{C}$. Input is either floating, tied to output or held higher than output.
Note 3: Output voltage drift is measured using the box method. Output voltage is recorded at $\mathrm{T}_{\text {MIN }}, 25^{\circ} \mathrm{C}$ and $\mathrm{T}_{\text {MAX }}$. The lowest of these three readings is subtracted from the highest and the resultant difference is divided by ($\mathrm{T}_{\text {MAX }}-\mathrm{T}_{\text {MIIN }}$).
Note 4: Line regulation and load regulation are measured on a pulse basis with low duty cycle. Effects due to die heating must be taken into account separately. See thermal regulation and application section.
Note 5: Load regulation is measured at a point $1 / 8$ " below the base of the package with Kelvin contacts.
Note 6: Shunt regulation is measured with the input floating. This parameter is also guaranteed with the input connected $\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right)>1 \mathrm{~V}$, $0 \mathrm{~mA} \leq \mathrm{I}_{\text {SINK }} \leq 10 \mathrm{~mA}$. Shunt and sink current flow into the output.

Note 7: Thermal regulation is caused by die temperature gradients created by load current or input voltage changes. This effect must be added to normal line or load regulation.
Note 8: Minimum shunt current is measured with shunt voltage held 20 mV below the value measured at 1 mA shunt current.
Note 9: Minimum input/output voltage is measured by holding input voltage 0.5 V above the nominal output voltage, while measuring $\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\text {our }}$.
Note 10: RMS noise is measured with a single pole highpass filter at 10 Hz and a 2 -pole lowpass filter at 1 kHz . The resulting output is full-wave rectified and then integrated for a fixed period, making the final reading an average as opposed to RMS. A correction factor of 1.1 is used to convert from average to RMS, and a second correction of 0.88 is used to correct the nonideal bandpass of the filters.
Note 11: If the part is stored outside of the specified temperature range, the output may shift due to hysteresis.

Downloaded from Elcodis.com electronic components distributor

TYPICAL PERFO RMAnCE CHARACTERISTICS

TYPICAL PERFO RMAnCE CHARACTERISTICS

LT1019• TPC10

LT1019• TPC11

LT1019-2.5* Stability with Output Capacitance

* LT1019-4.5/LT1019-5/LT1019-10 ARESTABLE WITH ALL LOAD CAPACITANCE

BLO CK DIAG RAM

APPLICATIO NS INFO RMATIO \cap

Line and Load Regulation

Line regulation on the LT1019 is nearly perfect. A 10V changein input voltagecauses atypical output shift of less than 5ppm. Load regulation (sourcing current) is nearly as good. A 5mA change in load current shifts output voltage by only $100 \mu \mathrm{~V}$. Theseare electrical effects, measured with low duty cycle pulses to eliminate heating effects. In real world applications, the thermal effects of load and line changes must be considered.

Two separate thermal effects are evident in monolithic circuits. One is agradient effect, where power dissipation on the die creates temperature gradients. Thesegradients can causeoutput voltageshifts even iftheoverall tempera turecoefficient of thereferenceiszero. TheLT1019, unlike previous references, specifies thermal regulation caused by die temperature gradients. The specification is $0.5 \mathrm{ppm} / \mathrm{mW}$. To calculate the effect on output voltage, simply multiply the changein device power dissipation by

APPLICATIO NS INFO RMATIO

the thermal regulation specification. Example: a 10 V device with a nominal input voltage of 15 V and load current of 5 mA . Find the effect of an input voltage change of 1 V and a load current change of 2 mA .

$$
\begin{aligned}
\Delta \mathrm{P}(\text { line change }) & =\left(\Delta \mathrm{V}_{\text {IN }}\right)\left(\mathrm{I}_{\mathrm{LOAD}}\right)=(1 \mathrm{~V})(5 \mathrm{~mA})=5 \mathrm{~mW} \\
\Delta \mathrm{~V}_{\mathrm{OUT}} & =(0.5 \mathrm{ppm} / \mathrm{mW})(5 \mathrm{~mW})=2.5 \mathrm{ppm} \\
\Delta \mathrm{P}(\text { load change }) & =\left(\Delta \mathrm{I}_{\mathrm{LOAD}}\right)\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\mathrm{OUT}}\right) \\
& =(2 \mathrm{~mA})(5 \mathrm{~V})=10 \mathrm{~mW} \\
\Delta \mathrm{~V}_{\mathrm{OU}} & =(0.5 \mathrm{ppm} / \mathrm{mW})(10 \mathrm{~mW})=5 \mathrm{ppm}
\end{aligned}
$$

Even though these effects aresmall, they should betaken into account in critical applications, especially whereinput voltage or load current is high.

The second thermal effect is overall die temperature change. The magnitude of this change is the product of change in power dissipation times the thermal resistance $\left(\theta_{\mathrm{JA}}\right)$ of the IC package $\cong\left(100^{\circ} \mathrm{C} \mathrm{W}\right.$ to $\left.150^{\circ} \mathrm{C} / \mathrm{W}\right)$. The effect on the reference output is calculated by multiplying dietemperaturechangeby thetemperaturedrift specification of the reference. Example: same conditions as above with $\theta_{\mathrm{JA}}=150^{\circ} \mathrm{CW}$ and an LT1019 with $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ drift specification.

$$
\begin{aligned}
\Delta \mathrm{P}(\text { line change }) & =5 \mathrm{~mW} \\
\Delta \mathrm{~V}_{\mathrm{OU}} & =(5 \mathrm{~mW})\left(150^{\circ} \mathrm{C} / \mathrm{W}\right)\left(20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right) \\
& =15 \mathrm{ppm} \\
\Delta \mathrm{P}(\text { load change }) & =10 \mathrm{~mW} \\
\Delta \mathrm{~V}_{\mathrm{OU}} & =(10 \mathrm{~mW})\left(150^{\circ} \mathrm{C} / \mathrm{W}\right)\left(20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right) \\
& =30 \mathrm{ppm}
\end{aligned}
$$

These calculations show that thermally induced output voltage variations can easily exceed the electrical effects. In critical applications where shifts in power dissipation are expected, a small clip-on heat sink can significantly improvethese effects by reducing overall die temperature change. Alternately, an LT1019A can be used with four times lower TC. If warm-up drift is of concern, these measures will also help. With warm-up drift, total device power dissipation must be considered. In the example given, warm-up drift (worst case) is equal to:

$$
\begin{aligned}
\text { Warm-up drift }= & {\left[\left(\mathrm{V}_{\text {IN }}\right)\left(\mathrm{I}_{\mathrm{Q}}\right)+\left(\mathrm{V}_{\mathbb{I N}}-\mathrm{V}_{\text {OUT }}\right)\left(\mathrm{I}_{\text {LOAD }}\right)\right] } \\
& {\left[\left(\theta_{\mathrm{JA}}\right)(\mathrm{TCC})\right] }
\end{aligned}
$$

with I_{Q} (quiescent current) $=0.6 \mathrm{~mA}$,

$$
\begin{aligned}
\text { Warm-up drift }= & {[(15 \mathrm{~V})(0.6 \mathrm{~mA})+(5 \mathrm{~V})(5 \mathrm{~mA})] } \\
& {\left[\left(150^{\circ} \mathrm{C} / \mathrm{W}\right)\left(25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)\right] } \\
= & 127.5 \mathrm{ppm}
\end{aligned}
$$

Note that 74\% of the warm-up drift is due to load current times input/output differential. This emphasizes the importance of keeping both these numbers low in critical applications.
Note that line regulation is now affected by reference output impedance. R1 should have a wattage rating high enough to withstand full input voltage if output shorts must be tolerated. Even with load currents below 10 mA , R1 can beused to reducepower dissipation in the LT1019 for lower warm-up drift, etc.

Output Trimming

Output voltage trimming on the LT1019 is nominally accomplished with a potentiometer connected from output to ground with the wiper tied to the trim pin. The LT1019 was madecompatiblewith existing references, so the trim range is large: $+6 \%,-6 \%$ for the LT1019-2.5, $+5 \%,-13 \%$ for the LT1019-5, and $+5 \%,-27 \%$ for the LT1019-10. This large trim range makes precision trimming rather difficult. One solution is to insert resistors in series with both ends of the potentiometer. This has the disadvantage of potentially poor tracking between the fixed resistors and thepotentiometer. A second method of reducing trim range is to insert aresistor in series with the wiper of the potentiometer. This works well only for very small trim rangebecause of themismatch in TCs between the series resistor and the internal thin film resistors. Thesefilm resistors can havea TCas high as $500 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. That same TC is then transferred to the change in output voltage: a 1% shift in output voltage causes a (500ppm) (1%) $=5 \mathrm{ppm} /{ }^{\circ}$ Cchange in output voltage drift.

APPLICATIO NS INFO RMATIO \cap

The worst-case error in initial output voltage for the LT1019 is 0.2%, so a series resistor is satisfactory if the output is simply trimmed to nominal value. Themaximum TCshift expected would be $1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

Using the Temp Pin

The LT1019 has a TBMP pin like several other bandgap references. The voltage on this pin is directly proportional to absolute temperature (PTAT) with a slope of approximately $2.1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. Roomtemperaturevoltageis thereforeapproximately $\left(295^{\circ} \mathrm{K}\right)\left(2.1 \mathrm{mV} /{ }^{\circ} \mathrm{C}\right)=620 \mathrm{mV}$. This voltagevarieswithprocessparameters and should not be used to measure absolute temperature, but rather relativetemperaturechanges. Previousbandgap references have been very sensitive to any loading on the TEMP pin because it is an integral part of the reference"core" itself. The LT1019 "taps" the coreat a special point which has much less effect on the reference. The relationship between TBMP pin loading and a change in reference output voltage is less than $0.05 \% / \mu \mathrm{A}$, about ten times improvement over previous references.

Output Bypassing

The LT1019 is designed to be stable with a wide range of load currents and output capacitors. The $4.5 \mathrm{~V}, 5 \mathrm{~V}$, and 10 V devices do not oscillate under any combination of
capacitance and load. The 2.5 V device can oscillate when sinking currents between 1 mA and 6 mA for load capacitance between 400 pF and $2 \mu \mathrm{~F}$ (sœ Figure 1).
If output bypassing is desired to reduce high frequency output impedance, keap in mind that loop phase margin is significantly reduced for output capacitors between 500 pF and $1 \mu \mathrm{~F}$ if the capacitor has low ESR (Effective Series Resistance). This can make the output "ring" with tran-

Figure 1. Output Bypassing
sient loads. The best transient load response is obtained by deliberately adding aresistor to increaseESR as shown in Fgure 1.

Use configuration (a) if DC voltage error cannot be compromised as load current changes. Use (b) if absolute minimum peak perturbation at the load is needed. For best transient response, the output can be loaded with $\geq 1 \mathrm{~mA}$ DCcurrent.

TYPICAL APPLICATIO NS

Wide Range Trim $\geq \pm 5 \%$

Narrow Trim Range ($\pm 0.2 \%$)

* INCREASE TO4.7M FOR LT1019A ($\pm 0.05 \%$)

TYPICAL APPLICATIO NS

Trimming LT1019-5 Output to 5.120V

Precision $1 \mu \mathrm{~A}$ Current Source

Trimming LT1019-10 Output to 10.240 V

Negative Series Reference

${ }^{*} R 1=\frac{\mathrm{V}^{+}-5 \mathrm{~V}}{2 \mathrm{~mA}}, \mathrm{R} 2=\frac{|\mathrm{V}|-\mathrm{V}_{\mathrm{RE}}}{1 \mathrm{~mA}}, \mathrm{D} 1=\mathrm{V}_{\mathrm{RE}}+5 \mathrm{~V}$

Output Current Boost with Current Limit

LT1019

SCHEMATIC DIAG RAM

PACKAG E DESCRIPTIO \cap Dimensions in inches (millimeters) unless otherwise noted.

S8 Package 8-Lead Plastic Small Outline (Narrow 0.150)
(LTCDWG\# 05-08-1610)

TYPICAL APPLICATIO \cap

Negative 10V Reference for CMOS DAC

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1027	Precision 5V Reference	Lowest TC, High Accuracy, Low Noise, Zener Based
LT1236	Precision Reference	5 V and 10 V Zener Based, $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, SO-8 Package
LT1460	Micropower Precision Series Reference	Bandgap, $130 \mu \mathrm{~A}$ Supply Ourrent, $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, Available in SOT-23 Package
LT1634	Micropower Precision Shunt Reference	Bandgap $0.05 \%, 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}, 10 \mu \mathrm{~A}$ Supply Ourrent
LTC1798	Micropower Low Dropout Reference	0.15% Max, $6.5 \mu \mathrm{~A}$ Supply Ourrent
LT1461	Micropower Low Dropout Reference	$3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}, 0.04 \%, 50 \mu \mathrm{~A}$ Supply Ourrent

