FEATURES

On-chip 4-quadrant resistors allow flexible output ranges
10 MHz multiplying bandwidth
50 MHz serial interface
2.5 V to 5.5 V supply operation
$\pm 10 \mathrm{~V}$ reference input
Extended temperature range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
24-lead TSSOP package
Guaranteed monotonic

Power-on reset

Daisy-chain mode
Readback function
$0.5 \mu \mathrm{~A}$ typical current consumption

APPLICATIONS

Portable battery-powered applications
Waveform generators
Analog processing
Instrumentation applications
Programmable amplifiers and attenuators
Digitally controlled calibration
Programmable filters and oscillators
Composite video
Ultrasound
Gain, offset, and voltage trimming

GENERAL DESCRIPTION

The AD5415 ${ }^{1}$ is a CMOS 12-bit, dual-channel, current output digital-to-analog converter. This device operates from a 2.5 V to 5.5 V power supply, making it suited to battery-powered applications as well as many other applications.

The applied external reference input voltage ($\mathrm{V}_{\text {REF }}$) determines the full-scale output current. An integrated feedback resistor (R_{FB}) provides temperature tracking and full-scale voltage output when combined with an external current-to-voltage precision amplifier. In addition, this device contains all the 4-quadrant resistors necessary for bipolar operation and other configuration modes.

This DAC utilizes a double-buffered 3-wire serial interface that is compatible with SPI ${ }^{\circ}$, QSPI $^{\mathrm{mw}}$, MICROWIRE ${ }^{\mathrm{mm}}$, and most DSP interface standards. In addition, a serial data out pin (SDO) allows for daisy-chaining when multiple packages are used. Data readback allows the user to read the contents of the DAC register via the SDO pin. On power-up, the internal shift register and latches are filled with zeros, and the DAC outputs are at zero scale. As a result of manufacture on a CMOS submicron process, this part offers excellent 4-quadrant multiplication characteristics, with large-signal multiplying bandwidths of 10 MHz .
${ }^{1}$ US Patent Number 5,689,257.

FUNCTIONAL BLOCK DIAGRAM

Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 www.analog.com
Fax: 781.326.8703 © 2004 Analog Devices, Inc. All rights reserved.

AD5415

TABLE OF CONTENTS

Specifications 3
Timing Characteristics 5
Absolute Maximum Ratings 7
ESD Caution 7
Pin Configuration and Function Descriptions. 8
Terminology 9
Typical Performance Characteristics 10
General Description 15
DAC Section 15
Unipolar Mode. 15
Bipolar Operation 16
Stability 16
Single-Supply Applications 17
Voltage Switching Mode of Operation 17
Positive Output Voltage 17
Adding Gain 17
Divider or Programmable Gain Element 17
Reference Selection 18
Amplifier Selection 18
Serial Interface 20
Low Power Serial Interface 20
Control Register 20
SYNC Function. 21
Daisy-Chain Mode 21
Standalone Mode. 21
$\overline{\text { LDAC }}$ Function 21
Microprocessor Interfacing. 22
PCB Layout and Power Supply Decoupling. 24
Evaluation Board for the DAC 24
Power Supplies for the Evaluation Board. 24
Outline Dimensions 28
Ordering Guide 28

REVISION HISTORY

7/04—Revision 0: Initial Version

SPECIFICATIONS

Temperature range for Y Version: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {Ref }}=10 \mathrm{~V}$, Iout 2 A , Iout $2 \mathrm{~B}=0 \mathrm{~V}$; all specifications $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.
DC performance measured with OP1177, ac performance with AD8038, unless otherwise noted.
Table 1.

Parameter	Min	Typ	Max	Unit	Conditions
STATIC PERFORMANCE Resolution Relative Accuracy Differential Nonlinearity Gain Error Gain Error Temperature Coefficient ${ }^{1}$ Bipolar Zero Code Error Output Leakage Current		± 5	$\begin{aligned} & 12 \\ & \pm 1 \\ & -1 /+2 \\ & \pm 25 \\ & \\ & \pm 25 \\ & \pm 1 \\ & \pm 10 \end{aligned}$	Bits LSB LSB mV ppm FSR/ $/{ }^{\circ} \mathrm{C}$ mV nA nA	Guaranteed monotonic $\begin{aligned} & \text { Data }=0 \times 0000, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \text { lout } 1 \\ & \text { Data }=0 \times 0000, \text { lout } 1 \end{aligned}$
REFERENCE INPUT ${ }^{1}$ Reference Input Range $V_{\text {ReF }}$, VrefB Input Resistance $V_{\text {ref }} A$ to $V_{\text {ref }} B$ Input Resistance Mismatch R_{1}, R FB Resistance R_{2}, R_{3} Resistance R_{2} to R_{3} Resistance Mismatch	8 16 16	$\begin{aligned} & \pm 10 \\ & 10 \\ & 1.6 \\ & \\ & 20 \\ & 20 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 12 \\ & 2.5 \\ & 24 \\ & 24 \\ & 0.18 \end{aligned}$	V k Ω \% k Ω k Ω \%	Typical Resistor $\mathrm{TC}=-50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ DAC input resistance $\mathrm{Typ}=25^{\circ} \mathrm{C}, \mathrm{Max}=125^{\circ} \mathrm{C}$ $\mathrm{Typ}=25^{\circ} \mathrm{C}, \text { Max }=125^{\circ} \mathrm{C}$
DIGITAL INPUTS/OUTPUT ${ }^{1}$ Input High Voltage, $\mathrm{V}_{\mathbf{H}}$ Input Low Voltage, VIL Input Leakage Current, ILL Input Capacitance $V_{D D}=4.5 \mathrm{~V}$ to 5.5 V Output Low Voltage, Vol Output High Voltage, Vон $V_{D D}=2.5 \mathrm{~V} \text { to } 3.6 \mathrm{~V}$ Output Low Voltage, Vol Output High Voltage, V_{OH}	1.7 $V_{D D}-1$ $V_{D D}-0.5$		$\begin{aligned} & 0.8 \\ & 0.7 \\ & 1 \\ & 10 \\ & 0.4 \\ & \\ & 0.4 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \\ & \mathrm{pF} \\ & \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=2.7 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=2.5 \mathrm{~V} \text { to } 2.7 \mathrm{~V} \end{aligned}$ $\begin{aligned} & I_{\text {SIINK }}=200 \mu \mathrm{~A} \\ & I_{\text {SOURCE }}=200 \mu \mathrm{~A} \end{aligned}$ $\begin{aligned} & I_{\text {SINK }}=200 \mu \mathrm{~A} \\ & I_{\text {SOURCE }}=200 \mu \mathrm{~A} \end{aligned}$
DYNAMIC PERFORMANCE ${ }^{1}$ Reference Multiplying Bandwidth Output Voltage Settling Time Digital Delay Digital-to-Analog Glitch Impulse Multiplying Feedthrough Error Output Capacitance Digital Feedthrough Total Harmonic Distortion Output Noise Spectral Density		10 90 20 3 5 -75 -75 25	$\begin{aligned} & 160 \\ & 40 \\ & -75 \\ & 2 \\ & 4 \end{aligned}$	MHz ns ns nV -s dB pF pF nV-s dB dB $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$	$V_{\text {REF }}=5 \mathrm{~V} p-\mathrm{p}, \mathrm{DAC}$ loaded all 1 s Measured to $\pm 4 \mathrm{mV}$ of FS ; RLOAD $=100 \Omega, \mathrm{C}_{\text {LOAD }}=$ $0 \mathrm{~s}, 15 \mathrm{pF}$, DAC latch alternately loaded with 0 s and 1 s 1 LSB change around major carry, $\mathrm{V}_{\text {REF }}=0 \mathrm{~V}$ DAC latch loaded with all 0 s , reference $=10 \mathrm{kHz}$ DAC latches loaded with all 0s DAC latches loaded with all 1s Feedthrough to DAC output with $\overline{C S}$ high and alternate loading of all 0 s and all 1 s $V_{\text {REF }}=5 \mathrm{~V}$ p-p, all 1s loaded, $\mathrm{f}=1 \mathrm{kHz}$ $V_{\text {REF }}=5 \mathrm{~V}$, sine wave generated from digital code @ 1 kHz

AD5415

Parameter	Min	Typ	Max	Unit	Conditions
SFDR Performance (Wideband)					
Clock $=10 \mathrm{MHz}$					
500 kHz fout		55		dB	
100 kHz fout		63		dB	
50 kHz fout		65		dB	
Clock $=25 \mathrm{MHz}$					
500 kHz fout		50		dB	
100 kHz fout		60		dB	
50 kHz fout		62		dB	
SFDR Performance (Narrow-Band)					
Clock $=10 \mathrm{MHz}$					
500 kHz fout		73		dB	
100 kHz fout		80		dB	
50 kHz fout		87		dB	
Clock $=25 \mathrm{MHz}$					
500 kHz fout		70		dB	
100 kHz fout		75		dB	
50 kHz fout		80		dB	
Intermodulation Distortion					
Clock $=10 \mathrm{MHz}$					
$\mathrm{f}_{1}=400 \mathrm{kHz}, \mathrm{f}_{2}=500 \mathrm{kHz}$		65		dB	
$\mathrm{f}_{1}=40 \mathrm{kHz}, \mathrm{f}_{2}=50 \mathrm{kHz}$		72		dB	
Clock $=25 \mathrm{MHz}$					
$\mathrm{f}_{1}=400 \mathrm{kHz}, \mathrm{f}_{2}=500 \mathrm{kHz}$		51		dB	
$\mathrm{f}_{1}=40 \mathrm{kHz}, \mathrm{f}_{2}=50 \mathrm{kHz}$		65		dB	
POWER REQUIREMENTS					
Power Supply Range	2.5		5.5	V	
IdD			10	$\mu \mathrm{A}$	Logic inputs $=0 \mathrm{~V}$ or V_{DD}
Power Supply Sensitivity ${ }^{1}$			0.001	\%/\%	$\Delta V_{D D}= \pm 5 \%$

${ }^{1}$ Guaranteed by design and characterization, not subject to production test.

TIMING CHARACTERISTICS

Temperature range for Y Version: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. See Figure 2 and Figure 3.
Guaranteed by design and characterization, not subject to production test.
All input signals are specified with $\mathrm{tr}=\mathrm{tf}=1 \mathrm{~ns}\left(10 \%\right.$ to 90% of $\left.\mathrm{V}_{\mathrm{DD}}\right)$ and timed from a voltage level of $\left(\mathrm{V}_{\mathrm{IL}}+\mathrm{V}_{\mathrm{IH}}\right) / 2$.
$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {ReF }}=5 \mathrm{~V}$, Iout $2=0 \mathrm{~V}$. All specifications $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.
Table 2.

Parameter	Limit at $\mathbf{T}_{\text {MIN, }}, \mathbf{T}_{\text {MAX }}$	Unit	Conditions/Comments ${ }^{1}$
$\mathrm{f}_{\text {sCLK }}$	50	MHz max	Maximum clock frequency
t_{1}	20	ns min	SCLK cycle time
t_{2}	8	ns min	SCLK high time
t_{3}	8	ns min	SCLK low time
t_{4}	13	ns min	$\overline{\text { SYNC falling edge to SCLK falling edge setup time }}$
t_{5}	5	ns min	Data setup time
t_{6}	4	ns min	Data hold time
t_{7}	5	ns min	$\overline{\text { SYNC rising edge to SCLK falling edge }}$
t_{8}	30	ns min	Minimum $\overline{\text { SYNC }}$ high time
t_{9}	0	ns min	SCLK falling edge to $\overline{\text { LDAC falling edge }}$
t_{10}	12	ns min	$\overline{\text { LDAC pulse width }}$
t_{11}	10	Ss min	SCLK falling edge to $\overline{\text { LDAC }}$ rising edge
$\mathrm{t}_{12}{ }^{2}$	25	SS min	SCLK active edge to SDO valid, strong SDO driver

[^0]${ }^{2}$ Daisy-chain and readback modes cannot operate at maximum clock frequency. SDO timing specifications measured with a load circuit, as shown in Figure 4.

Figure 2. Standalone Mode Timing Diagram

AD5415

ALTERNATIVELY, DATA CAN BE CLOCKED INTO INPUT SHIFT REGISTER ON RISING EDGE OF SCLK AS DETERMINED BY CONTROL BITS. IN THIS CASE, DATA WOULD BE CLOCKED OUT OF SDO ON FALLING EDGE OF SCLK. TIMING AS ABOVE, WITH SCLK INVERTED.

Figure 3. Daisy-Chain and Readback Modes Timing Diagram

Figure 4. Load Circuit for SDO Timing Specifications

ABSOLUTE MAXIMUM RATINGS

Transient currents of up to 100 mA do not cause SCR latch-up. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 3.

Parameter	Rating
V $_{\text {DD }}$ to GND	-0.3 V to +7 V
V $_{\text {REF }, ~} \mathrm{R}_{\text {FB }}$ to GND	-12 V to +12 V
louT1, lout2 to GND	-0.3 V to +7 V
Input Current to Any Pin except Supplies	$\pm 10 \mathrm{~mA}$
Logic Inputs and Output ${ }^{1}$	-0.3 V to V $\mathrm{VD}+0.3 \mathrm{~V}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Extended (Y Version)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range	$150^{\circ} \mathrm{C}$
Junction Temperature	$128^{\circ} \mathrm{C} / \mathrm{W}$
24-Lead TSSOP θ_{JA} Thermal Impedance	
Lead Temperature, Soldering	$300^{\circ} \mathrm{C}$
(10 seconds)	$235^{\circ} \mathrm{C}$
IR Reflow, Peak Temperature	
(<20 seconds)	

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{1}$ Overvoltages at SCLK, $\overline{\text { SYNC, }}$, and DIN are clamped by internal diodes.
Current should be limited to the maximum ratings given.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

$\mathrm{I}_{\text {Out }}{ }^{14}$	AD5415 TOP VIEW (Not to Scale)	24	lout 1 B
$\mathrm{I}_{\text {OUT }} 2 \mathrm{~A}$		23	$\mathrm{lout}{ }^{2 B}$
$\mathrm{R}_{\mathrm{FB}} \mathrm{A}{ }^{3}$		22	$\mathrm{R}_{\mathrm{FB}} \mathrm{B}$
R1A 4		21	R1B
R2A 5		20	R2B
R2_3A 6		19	R2_3B
R3A 7		18	R3B
$\mathrm{V}_{\text {REF }}{ }^{\text {d }} 8$		17	$V_{\text {REF }} B$
GND 9		16	$V_{D D}$
$\overline{\text { LDAC } 10}$		15	$\overline{C L R}$
SCLK 11		14	$\overline{\text { SYNC }}$
SDIN 12		13	SDO

Figure 5. Pin Configuration
Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Function
1	lout1A	DAC A Current Output.
2	lout2A	DAC A Analog Ground. This pin should normally be tied to the analog ground of the system, but can be biased to achieve single-supply operation.
3	$\mathrm{R}_{\text {FB }} \mathrm{A}$	DAC Feedback Resistor Pin. This pin establishes voltage output for the DAC by connecting to the external amplifier output.
4-7	R1A-R3A	DAC A 4-Quadrant Resistors. These pins allow a number of configuration modes, including bipolar operation, with minimum external components.
8	$\mathrm{V}_{\text {bef }} \mathrm{A}$	DAC A Reference Voltage Input Pin.
9	GND	Ground Pin.
10	$\overline{\text { LDAC }}$	Load DAC Input. This pin allows asynchronous or synchronous updates to the DAC output. The DAC is asynchronously updated when this signal goes low. Alternatively, if this line is held permanently low, an automatic or synchronous update mode is selected whereby the DAC is updated on the 16th clock falling edge when the device is in standalone mode or on the rising edge of $\overline{\mathrm{SYNC}}$ when in daisy-chain mode.
11	SCLK	Serial Clock Input. By default, data is clocked into the input shift register on the falling edge of the serial clock input. Alternatively, by means of the serial control bits, the device can be configured such that data is clocked into the shift register on the rising edge of SCLK.
12	SDIN	Serial Data Input. Data is clocked into the 16 -bit input register on the active edge of the serial clock input. By default, on power-up, data is clocked into the shift register on the falling edge of SCLK. The control bits allow the user to change the active edge to the rising edge.
13	SDO	Serial Data Output. This pin allows a number of parts to be daisy-chained. By default, data is clocked into the shift register on the falling edge and out via SDO on the rising edge of SCLK. Data is always clocked out on the alternate edge to loading data to the shift register. Writing the readback control word to the shift register makes the DAC register contents available for readback on the SDO pin, clocked out on the next 16 opposite clock edges to the active clock edge.
14	$\overline{\text { SYNC }}$	Active Low Control Input. The frame synchronization signal for the input data. When $\overline{\text { SYNC }}$ goes low, it powers on the SCLK and DIN buffers, and the input shift register is enabled. Data is loaded to the shift register on the active edge of the following clocks. In standalone mode, the serial interface counts clocks, and data is latched to the shift register on the 16th active clock edge.
15	$\overline{\mathrm{CLR}}$	Active Low Control Input. This pin clears the DAC output, input, and DAC registers. Configuration mode allows the user to enable the hardware $\overline{\mathrm{CLR}}$ pin as a clear to zero scale or midscale, as required.
16	$V_{\text {DD }}$	Positive Power Supply Input. This part can be operated from a supply of 2.5 V to 5.5 V .
17	$V_{\text {gef }} \mathrm{B}$	DAC B Reference Voltage Input Pin.
18-21	R1B-R3B	DAC B 4-Quadrant Resistors. These pins allow a number of configuration modes, including bipolar operation, with minimum of external components.
22	RfBB	DAC B Feedback Resistor Pin. This pin establishes voltage output for the DAC by connecting to the external amplifier output.
23	lout2B	DAC B Analog Ground. This pin should normally be tied to the analog ground of the system, but can be biased to achieve single-supply operation.
24	lout1B	DAC B Current Output.

TERMINOLOGY

Relative Accuracy

Relative accuracy or endpoint nonlinearity is a measure of the maximum deviation from a straight line passing through the endpoints of the DAC transfer function. It is measured after adjusting for zero scale and full scale, and is normally expressed in LSB or as a percentage of full-scale reading.

Differential Nonlinearity

Differential nonlinearity is the difference in the measured change and the ideal 1 LSB change between any two adjacent codes. A specified differential nonlinearity of ± 1 LSB maximum over the operating temperature range ensures monotonicity.

Gain Error

Gain error or full-scale error is a measure of the output error between an ideal DAC and the actual device output. For these DACs, ideal maximum output is $\mathrm{V}_{\text {REF }}-1$ LSB. Gain error of the DACs is adjustable to zero with external resistance.

Output Leakage Current

Output leakage current is current that flows in the DAC ladder switches when they are turned off. For the Iour 1 terminal, it can be measured by loading all 0 s to the DAC and measuring the Iour 1 current. Minimum current flows in the Iout 2 line when the DAC is loaded with all 1 s .

Output Capacitance

Capacitance from Iour 1 or Iout 2 to AGND.

Output Current Settling Time

The amount of time it takes for the output to settle to a specified level for a full-scale input change. For these devices, it is specified with a 100Ω resistor to ground.

Digital-to-Analog Glitch Impulse

The amount of charge injected from the digital inputs to the analog output when the inputs change state. This is normally specified as the area of the glitch in either pA-s or nV -s depending upon whether the glitch is measured as a current or voltage signal.

Digital Feedthrough

When the device is not selected, high frequency logic activity on the device's digital inputs is capacitively coupled through the device to show up as noise on the Iout pins and subsequently into the following circuitry. This noise is digital feedthrough.

Multiplying Feedthrough Error

The error due to capacitive feedthrough from the DAC reference input to the DAC Iout 1 terminal when all 0 s are loaded to the DAC.

Digital Crosstalk

The glitch impulse transferred to the outputs of one DAC in response to a full-scale code change (all 0 s to all 1 s and vice versa) in the input register of the other DAC. It is expressed in nV -s.

Analog Crosstalk

The glitch impulse transferred to the output of one DAC due to a change in the output of another DAC. It is measured by loading one of the input registers with a full-scale code change (all 0 s to all 1 s and vice versa), while keeping $\overline{\mathrm{LDAC}}$ high. Then pulse $\overline{\mathrm{LDAC}}$ low and monitor the output of the DAC whose digital code was not changed. The area of the glitch is expressed in $n V$-s.

Channel-to-Channel Isolation

The proportion of input signal from one DAC reference input that appears at the output of the other DAC and is expressed in dB .

Harmonic Distortion

The DAC is driven by an ac reference. The ratio of the rms sum of the harmonics of the DAC output to the fundamental value is the total harmonic distortion (THD). Usually only the lowerorder harmonics are included, such as second to fifth.

$$
T H D=20 \log \sqrt{\frac{\left(V_{2}^{2}+V_{3}^{2}+V_{4}^{2}+V_{5}^{2}\right)}{V_{1}}}
$$

Intermodulation Distortion

The DAC is driven by two combined sine wave references of frequencies fa and fb . Distortion products are produced at sum and difference frequencies of $\mathrm{mfa} \pm \mathrm{nfb}$, where $m, n=0,1,2,3 \ldots$ Intermodulation terms are those for which m or n is not equal to zero. The second-order terms include ($\mathrm{fa}+\mathrm{fb}$) and ($\mathrm{fa}-\mathrm{fb}$) and the third-order terms are $(2 \mathrm{fa}+\mathrm{fb}),(2 \mathrm{fa}-\mathrm{fb}),(\mathrm{f}+2 \mathrm{fa}+$ 2 fb) and ($\mathrm{fa}-2 \mathrm{fb}$). IMD is defined as

$$
I M D=20 \log \frac{(\text { rms sumof the sumand diff distortion products })}{\text { rmsamplitudeof the fundamental }}
$$

Compliance Voltage Range

The maximum range of (output) terminal voltage for which the device provides the specified characteristics.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 6. INL vs. Code (12-Bit DAC)

Figure 7. DNL vs. Code (12-Bit DAC)

Figure 8. INL vs. Reference Voltage

Figure 9. DNL vs. Reference Voltage

Figure 10. Gain Error vs. Temperature

Figure 11. Supply Current vs. Logic Input Voltage

Figure 12. Iout 1 Leakage Current vs. Temperature

Figure 13. Supply Current vs. Temperature

Figure 14. Supply Current vs. Update Rate

Figure 15. Reference Multiplying Bandwidth vs. Frequency and Code

Figure 16. Reference Multiplying Bandwidth-All Ones Loaded

Figure 17. Reference Multiplying Bandwidth vs. Frequency and Compensation Capacitor

AD5415

Figure 18. Midscale Transition, $V_{\text {REF }}=O \mathrm{~V}$

Figure 19. Midscale Transition, $V_{R E F}=3.5 \mathrm{~V}$

Figure 20. Power Supply Rejection vs. Frequency

Figure 21. THD and Noise vs. Frequency

Figure 22. Wideband SFDR vs. fout Frequency

Figure 23. Wideband SFDR vs. fout Frequency

Figure 24. Wideband SFDR, fout $=100 \mathrm{kHz}$, Clock $=25 \mathrm{MHz}$

Figure 25. Wideband SFDR, $f_{\text {out }}=500 \mathrm{kHz}$, Clock $=10 \mathrm{MHz}$

Figure 26. Wideband SFDR, $f_{\text {OUt }}=50 \mathrm{kHz}$, Clock $=10 \mathrm{MHz}$

Figure 27. Narrow-Band Spectral Response, fout $=500 \mathrm{kHz}$, Clock $=25 \mathrm{MHz}$

Figure 28. Narrow-Band SFDR, $f_{\text {OUT }}=100 \mathrm{kHz}, M C L K=25 \mathrm{MHz}$

Figure 29. Narrow-Band IMD, fout $=90 \mathrm{kHz}, 100 \mathrm{kHz}$, Clock $=10 \mathrm{MHz}$

AD5415

Figure 30. Wideband IMD, fout $=90 \mathrm{kHz}, 100 \mathrm{kHz}$, Clock $=25 \mathrm{MHz}$

Figure 31. Output Noise Spectral Density

GENERAL DESCRIPTION

DAC SECTION

The AD5415 is a 12 -bit, dual-channel, current output DAC consisting of standard inverting R to 2 R ladder configuration. A simplified diagram of one DAC channel for the AD5415 is shown in Figure 32. The feedback resistor $R_{F B}$ has a value of 2R. The value of R is typically $10 \mathrm{k} \Omega$ (minimum $8 \mathrm{k} \Omega$ and maximum $12 \mathrm{k} \Omega$). If Iour 1 and Iour 2 are kept at the same potential, a constant current flows in each ladder leg, regardless of the digital input code. Therefore, the input resistance presented at $V_{\text {Ref }}$ is always constant.

Figure 32. Simplified Ladder
Access is provided to the $\mathrm{V}_{\mathrm{REF}}, \mathrm{R}_{\mathrm{FB}}$, Iout 1 , and Iout 2 terminals of the DAC, making the device extremely versatile and allowing it to be configured in several different operating modes, for example, to provide a unipolar output, bipolar output, or in single-supply modes of operation in unipolar mode or 4-quadrant multiplication in bipolar mode.

UNIPOLAR MODE

Using a single op amp, these devices can easily be configured to provide 2-quadrant multiplying operation or a unipolar output voltage swing, as shown in Figure 33. When an output amplifier is connected in unipolar mode, the output voltage is given by

$$
V_{\text {OUT }}=-V_{R E F} \times D / 2^{n}
$$

where:
D is the fractional representation of the digital word loaded to the DAC, in the range of 0 to 4095.
n is the number of bits.
Note that the output voltage polarity is opposite the $V_{R E F}$ polarity for dc reference voltages.

These DACs are designed to operate with either negative or positive reference voltages. The $V_{D D}$ power pin is used only by the internal digital logic to drive the DAC switches' on and off states.

These DACs are also designed to accommodate ac reference input signals in the range of -10 V to +10 V .

With a fixed 10 V reference, the circuit in Figure 32 gives a unipolar 0 V to -10 V output voltage swing. When V_{IN} is an ac signal, the circuit performs 2-quadrant multiplication.

Table 5 shows the relationship between digital code and expected output voltage for unipolar operation.
Table 5. Unipolar Code Table

Digital Input	Analog Output (V)
11111111	$-V_{\text {REF }}(4095 / 4096)$
10000000	$-V_{\text {REF }}(2048 / 4096)=-V_{\text {REF }} / 2$
00000001	$-V_{\text {REF }}(1 / 4096)$
00000000	$-V_{\text {REF }}(0 / 4096)=0$

Figure 33. Unipolar Operation

AD5415

BIPOLAR OPERATION

In some applications, it might be necessary to generate full 4 -quadrant multiplying operation or a bipolar output swing. This can be easily accomplished by using another external amplifier and the on chip 4-quadrant resistors, as shown in Figure 34.

When in bipolar mode, the output voltage is given by

$$
V_{\text {OUT }}=V_{\text {REF }} \times D / 2^{n-1}-V_{\text {REF }}
$$

where D is the fractional representation of the digital word loaded to the DAC, in the range of 0 to 4095.
n is the number of bits.
When $V_{\text {IN }}$ is an ac signal, the circuit performs 4-quadrant multiplication.

Table 6 shows the relationship between digital code and the expected output voltage for bipolar operation.

Table 6. Bipolar Code Table

Digital Input	Analog Output (V)
11111111	$+V_{\text {REF }}(2047 / 2048)$
10000000	0
00000001	$-V_{\text {REF }}(2047 / 2048)$
00000000	$V_{\text {REF }}(2048 / 2048)$

STABILITY

In the I-to-V configuration, the Iout of the DAC and the inverting node of the op amp must be connected as close as possible, and proper PCB layout techniques must be employed. Because every code change corresponds to a step function, gain peaking can occur if the op amp has limited GBP and there is excessive parasitic capacitance at the inverting node. This parasitic capacitance introduces a pole into the open loop response that can cause ringing or instability in the closed loop application's circuit.

An optional compensation capacitor, C 1 , can be added in parallel with R_{FB} for stability, as shown in Figure 33 and Figure 34. Too small a value of C 1 can produce ringing at the output, while too large a value can adversely affect the settling time. C 1 should be found empirically, but 1 pF to 2 pF is generally adequate for the compensation.

Figure 34. Bipolar Operation

SINGLE-SUPPLY APPLICATIONS

VOLTAGE SWITCHING MODE OF OPERATION

Figure 35 shows these DACs operating in the voltage switching mode. The reference voltage, V_{IN}, is applied to the Iour 1 pin, Iout2 is connected to AGND, and the output voltage is available at the $\mathrm{V}_{\text {REF }}$ terminal. In this configuration, a positive reference voltage results in a positive output voltage, making singlesupply operation possible. The output from the DAC is voltage at a constant impedance (the DAC ladder resistance). Therefore, an op amp is necessary to buffer the output voltage. The reference input no longer sees a constant input impedance, but one that varies with code. So, the voltage input should be driven from a low impedance source.

1. SIMILAR CONFIGURATION FOR DACB
2. C1 PHASE COMPENSATION (1pF TO 2pF) MAY BE REQUIRED IF A1 IS A HIGH SPEED AMPLIFIER.

Figure 35. Single-Supply Voltage Switching Mode
Note that $\mathrm{V}_{\text {IN }}$ is limited to low voltages, because the switches in the DAC ladder no longer have the same source-drain drive voltage. As a result, their on resistance differs and this degrades the integral linearity of the DAC. Also, $\mathrm{V}_{\text {IN }}$ must not go negative by more than 0.3 V or an internal diode is turned on, exceeding the maximum ratings of the device. In this type of application, the full range of multiplying capability of the DAC is lost.

POSITIVE OUTPUT VOLTAGE

The output voltage polarity is opposite to the $V_{\text {REF }}$ polarity for dc reference voltages. To achieve a positive voltage output, an applied negative reference to the input of the DAC is preferred over the output inversion through an inverting amplifier because of the resistors' tolerance errors. To generate a negative reference, the reference can be level-shifted by an op amp such that the Vout and GND pins of the reference become the virtual ground and -2.5 V , respectively, as shown in Figure 36.

Figure 36. Positive Voltage Output with Minimum of Components

ADDING GAIN

In applications where the output voltage is required to be greater than $\mathrm{V}_{\text {IN }}$, gain can be added with an additional external amplifier, or it can also be achieved in a single stage. It is important to take into consideration the effect of temperature coefficients of the thin film resistors of the DAC. Simply placing a resistor in series with the R_{FB} resistor causes mismatches in the temperature coefficients, resulting in larger gain temperature coefficient errors. Instead, the circuit in Figure 37 is a recommended method of increasing the gain of the circuit. $\mathrm{R}_{1}, \mathrm{R}_{2}$, and R_{3} should all have similar temperature coefficients, but they need not match the temperature coefficients of the DAC. This approach is recommended in circuits where gains of greater than 1 are required.

${ }^{2} \mathrm{C} 1$ PHASE COMPENSATION (1pF TO 2pF) MAY BE REQUIRED, IF A1 IS A HIGH SPEED AMPLIFIER.

Figure 37. Increasing the Gain of the Current Output DAC

DIVIDER OR PROGRAMMABLE GAIN ELEMENT

Current-steering DACs are very flexible and lend themselves to many different applications. If this type of DAC is connected as the feedback element of an op amp and R_{FB} is used as the input resistor, as shown in Figure 38, then the output voltage is inversely proportional to the digital input fraction, D. For D equal to $1-2^{n}$, the output voltage is

$$
V_{\text {OUT }}=-V_{\text {IN }} / D=-V_{I N} /\left(1-2^{-n}\right)
$$

AD5415

Figure 38. Current-Steering DAC Used as a Divider or Programmable Gain Element

As D is reduced, the output voltage increases. For small values of the digital fraction, D, it is important to ensure that the amplifier does not saturate and also that the required accuracy is met. For example, an 8 -bit DAC driven with the binary code $0 \times 10(00010000)$, that is, 16 decimal, in the circuit of Figure 37 should cause the output voltage to be 16 times Vin. However, if the DAC has a linearity specification of $\pm 0.5 \mathrm{LSB}$, then D can, in fact, have a weight anywhere in the range $15.5 / 256$ to $16.5 / 256$, so that the possible output voltage is in the range $15.5 \mathrm{~V}_{\text {IN }}$ to $16.5 \mathrm{~V}_{\mathrm{IN}}$, an error of 3% even though the DAC itself has a maximum error of 0.2%.

DAC leakage current is also a potential error source in divider circuits. The leakage current must be counterbalanced by an opposite current supplied from the op amp through the DAC. Because only a fraction D of the current into the $V_{\text {ref }}$ terminal is routed to the Iout 1 terminal, the output voltage has to change as follows:

Output Error Voltage Due to DAC Leakage $=($ Leakage $\times R) / D$
where R is the DAC resistance at the $V_{\text {ReF }}$ terminal.
For a DAC leakage current of $10 \mathrm{nA}, R=10 \mathrm{k} \Omega$, and a gain (that is, $1 / \mathrm{D}$) of 16 , the error voltage is 1.6 mV .

REFERENCE SELECTION

When selecting a reference for use with the AD54xx series of current output DACs, pay attention to the reference's output voltage temperature coefficient specification. This parameter affects not only the full-scale error, but can also affect the linearity (INL and DNL) performance. The reference temperature coefficient should be consistent with the system accuracy specifications. For example, an 8-bit system required to hold its
overall specification to within 1 LSB over the temperature range $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ dictates that the maximum system drift with temperature should be less than $78 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. A 12 -bit system with the same temperature range to overall specification within 2 LSB requires a maximum drift of $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. By choosing a precision reference with a low output temperature coefficient, this error source can be minimized. Table 7 suggests some of the references available from Analog Devices that are suitable for use with this range of current output DACs.

AMPLIFIER SELECTION

The primary requirement for the current-steering mode is an amplifier with low input bias currents and low input offset voltage. The input offset voltage of an op amp is multiplied by the variable gain (due to the code-dependent output resistance of the DAC) of the circuit. A change in this noise gain between two adjacent digital fractions produces a step change in the output voltage due to the amplifier's input offset voltage. This output voltage change is superimposed upon the desired change in output between the two codes and gives rise to a differential linearity error, which, if large enough, could cause the DAC to be nonmonotonic.

The input bias current of an op amp also generates an offset at the voltage output as a result of the bias current flowing in the feedback resistor, R_{FB}. Most op amps have input bias currents low enough to prevent any significant errors in 12-bit applications.

Common-mode rejection of the op amp is important in voltage switching circuits, because it produces a code-dependent error at the voltage output of the circuit. Most op amps have adequate common-mode rejection for use at 12 -bit resolution.

Provided that the DAC switches are driven from true wideband low impedance sources ($\mathrm{V}_{\text {IN }}$ and AGND), they settle quickly. Consequently, the slew rate and settling time of a voltage switching DAC circuit is determined largely by the output op amp. To obtain minimum settling time in this configuration, it is important to minimize capacitance at the $\mathrm{V}_{\text {REF }}$ node (voltage output node in this application) of the DAC. This is done by using low inputs, capacitance buffer amplifiers, and careful board design.

Most single-supply circuits include ground as part of the analog signal range, which in turn requires an amplifier that can handle rail-to-rail signals. A large range of single-supply amplifiers is available from Analog Devices.

AD5415

Table 7. ADI Precision References for Use with AD54xx DACs

Reference	Output Voltage (V)	Initial Tolerance (\%)	Temp. Drift (ppm/ ${ }^{\circ} \mathbf{C}$)	$\mathbf{0 . 1 ~ H z ~ t o ~} \mathbf{1 0 ~ H z ~ N o i s e ~}$	Package
ADR01	10	0.1	3	$20 \mu \vee \mathrm{p}-\mathrm{p}$	$10 \mu \mathrm{p}-\mathrm{p}$
ADR02	5	0.1	3	$10 \mu \mathrm{p}-\mathrm{p}$	SC70, TSOT, SOIC
ADR03	2.5	0.2	3	$3.4 \mu \mathrm{p}-\mathrm{p}$	SC7, TSOT, SOIC
ADR425	5	0.04	3	MSOP, SOIC	

Table 8. Precision ADI Op Amps for Use with AD54xx DACs

Part No.	Max Supply Voltage (V)	$\mathbf{V}_{\text {os }}(\boldsymbol{m a x}) \boldsymbol{\mu} \mathbf{V}$	$\mathbf{I}_{\mathbf{B}}(\boldsymbol{m a x}) \mathbf{n A}$	$\mathbf{G B P} \mathbf{~ M H z}$	Slew Rate $(\mathbf{V} / \boldsymbol{\mu s})$
OP97	± 20	25	0.1	0.9	0.2
OP1177	± 18	60	2	1.3	0.7
AD8551	± 6	5	0.05	1.5	0.4

Table 9. High Speed ADI Op Amps for Use with AD54xx DACs

Part No.	Max Supply Voltage (V)	$\mathbf{V}_{\mathbf{o s}}(\boldsymbol{m a x}) \boldsymbol{\mu} \mathbf{V}$	$\mathbf{I}_{\mathbf{B}}(\boldsymbol{m a x}) \mathbf{n A}$	$\mathbf{B W} @ \mathbf{A c L}^{\mathbf{~ M H z}}$	Slew Rate (V/ $\boldsymbol{\mu s})$
AD8065	± 12	1500	0.01	145	180
AD8021	± 12	1000	1000	200	100
AD8038	± 5	3000	0.75	350	425

AD5415

SERIAL INTERFACE

The AD5415 has an easy-to-use 3-wire interface, which is compatible with SPI, QSPI, MICROWIRE, and DSP interface standards. Data is written to the device in 16-bit words. Each 16-bit word consists of four control bits and 12 data bits, as shown in Figure 39.

LOW POWER SERIAL INTERFACE

To minimize the power consumption of the device, the interface powers up fully only when the device is being written to, that is, on the falling edge of SYNC. The SCLK and DIN input buffers are powered down on the rising edge of $\overline{S Y N C}$.

DAC Control Bits C3 to CO

Control bits C 3 to C 0 allow control of various functions of the DAC, as shown in Table 11. Default settings of the DAC at power-on are as follows. Data is clocked into the shift register on falling clock edges; daisy-chain mode is enabled. The device powers on with zero-scale load to the DAC register and Iout lines. The DAC control bits allow the user to adjust certain features at power-on. For example, daisy-chaining can be disabled when not in use, active clock edge can be changed to rising edge, and DAC output can be cleared to either zero scale or midscale. The user can also initiate a readback of the DAC register contents for verification purposes.

CONTROL REGISTER

(Control Bits = 1101)
While maintaining software compatibility with the singlechannel current output DACs (AD5426/AD5433/AD5443), this DAC also features some additional interface functionality. Simply set the control bits to 1101 to enter control register mode. Figure 40 shows the contents of the control register, the functions of which are described in the following sections.

SDO Control (SDO1 and SDO2)

The SDO bits enable the user to control the SDO output driver strength, disable the SDO output, or configure it as an opendrain driver. The strength of the SDO driver affects the timing of t_{12} and, when stronger, allows a faster clock cycle to be used.

Table 10. SDO Control Bits

SDO2	SDO1	Function
0	0	Full SDO Driver
0	1	SDO Configured as Open Drain
1	0	Weak SDO Driver
1	1	Disable SDO Output

Daisy-Chain Control (DSY)

DSY enables or disables daisy-chain mode. A 1 enables daisychain mode; a 0 disables $i t$. When disabled, a readback request is accepted, SDO is automatically enabled, the DAC register contents of the relevant DAC are clocked out on SDO, and, when complete, SDO is disabled again.

Hardware $\overline{C L R}$ Bit (HCLR)

The default setting for the hardware $\overline{\mathrm{CLR}}$ pin is to clear the registers and DAC output to zero code. A 1 in the HCLR bit clears the DAC outputs to midscale; a 0 clears them to zero scale.

Active Clock Edge (SCLK)

The default active clock edge is the falling edge. Write a 1 to this bit to clock data in on the rising edge; write a 0 to clock it on the falling edge.

Figure 39. AD5415 12-Bit Input Shift Register Contents

Figure 40. Control Register Loading Sequence

Table 11. DAC Control Bits

C3	C2	C1	C0	DAC	Function
0	0	0	0	A and B	No Operation (Power-On Default)
0	0	0	1	A	Load and Update
0	0	1	0	A	Initiate Readback
0	0	1	1	A	Load Input Register
0	1	0	0	B	Load and Update
0	1	0	1	B	Initiate Readback
0	1	1	0	B	Load Input Register
0	1	1	1	A and B	Update DAC Outputs
1	0	0	0	A and B	Load Input Registers
1	0	0	1	-	Daisy-Chain Disable
1	0	1	0	-	Clock Data to Shift Register on Rising Edge
1	0	1	1	-	Clear DAC Output to Zero
1	1	0	0	-	Clear DAC Output to Midscale
1	1	0	1	-	Control Word
1	1	1	0	-	Reserved
1	1	1	1	-	No Operation

SYNC FUNCTION

$\overline{\text { SYNC }}$ is an edge-triggered input that acts as a frame synchronization signal and chip enable. Data can be transferred into the device only while $\overline{\text { SYNC }}$ is low. To start the serial data transfer, $\overline{\text { SYNC }}$ should be taken low, observing the minimum $\overline{\text { SYNC }}$ falling to SCLK falling edge setup time, t_{4}.

DAISY-CHAIN MODE

Daisy-chain mode is the default mode at power-on. To disable the daisy-chain function, write 1001 to the control word. In daisy-chain mode, the internal gating on SCLK is disabled. The SCLK is continuously applied to the input shift register when $\overline{\text { SYNC }}$ is low. If more than 16 clock pulses are applied, the data ripples out of the shift register and appears on the SDO line. This data is clocked out on the rising edge of SCLK and is valid for the next device on the falling edge (default). By connecting this line to the DIN input on the next device in the chain, a multidevice interface is constructed. Sixteen clock pulses are required for each device in the system. Therefore, the total number of clock cycles must equal $16 N$, where N is the total number of devices in the chain. (See the timing diagram in Figure 4.)

When the serial transfer to all devices is complete, $\overline{\text { SYNC }}$ should be taken high. This prevents any further data from being clocked into the input shift register. A burst clock containing the exact number of clock cycles can be used and $\overline{\text { SYNC }}$ taken high some time later. After the rising edge of $\overline{\text { SYNC, data is automati- }}$ cally transferred from each device's input shift register to the addressed DAC.

When control bits are 0000, the device is in no-operation mode. This might be useful in daisy-chain applications, where the user does not want to change the settings of a particular DAC in the chain. Simply write 0000 to the control bits for that DAC, and the following data bits are ignored.

STANDALONE MODE

After power-on, writing 1001 to the control word disables daisychain mode. The first falling edge of $\overline{\text { SYNC }}$ resets a counter that counts the number of serial clocks to ensure that the correct number of bits is shifted in and out of the serial shift registers. A $\overline{\text { SYNC }}$ edge during the 16-bit write cycle causes the device to abort the current write cycle.

After the falling edge of the 16th SCLK pulse, data is automatically transferred from the input shift register to the DAC. In order for another serial transfer to take place, the counter must be reset by the falling edge of $\overline{S Y N C}$.

LDAC FUNCTION

The $\overline{\text { LDAC }}$ function allows asynchronous or synchronous updates to the DAC output. The DAC is asynchronously updated when this signal goes low. Alternatively, if this line is held permanently low, an automatic or synchronous update mode is selected, whereby the DAC is updated on the 16 th clock falling edge when the device is in standalone mode or on the rising edge of $\overline{S Y N C}$ when in daisy-chain mode.

Software LDAC Function

Load and update mode also functions as a software update function, irrespective of the voltage level on the $\overline{\mathrm{LDAC}}$ pin.

AD5415

MICROPROCESSOR INTERFACING

Microprocessor interfacing to the AD5415 DAC is through a serial bus that uses standard protocol compatible with microcontrollers and DSP processors. The communications channel is a 3-wire interface consisting of a clock signal, a data signal, and a synchronization signal. The AD5415 requires a 16 -bit word, with the default being data valid on the falling edge of SCLK, but this is changeable using the control bits in the data-word.

ADSP-21xx to AD5415 Interface

The ADSP-21xx family of DSPs is easily interfaced to the AD5415 DAC without the need for extra glue logic. Figure 40 is an example of an SPI interface between the DAC and the ADSP-2191M. SCK of the DSP drives the serial data line, DIN. SYNC is driven from one of the port lines, in this case SPIxSEL.

Figure 41. ADSP-2191 SPI to AD5415 Interface
A serial interface between the DAC and DSP SPORT is shown in Figure 42. In this interface example, SPORT0 is used to transfer data to the DAC shift register. Transmission is initiated by writing a word to the Tx register after the SPORT has been enabled. In a write sequence, data is clocked out on each rising edge of the DSP's serial clock and clocked into the DAC input shift register on the falling edge of its SCLK. The update of the DAC output takes place on the rising edge of the SYNC signal.

Figure 42. ADSP-2101/ADSP-2103/ADSP-2191 SPORT to AD5415 Interface
Communication between two devices at a given clock speed is possible when the following specifications are compatible: frame sync delay and frame sync setup-and-hold, data delay and data setup-and-hold, and SCLK width. The DAC interface expects a t_{4} (SYNC falling edge to SCLK falling edge setup time) of 13 ns minimum. See the ADSP-21xx User Manual for information on clock and frame sync frequencies for the SPORT register.

Table 12 shows the set up for the SPORT control register.

Table 12. SPORT Control Register Setup

Name	Setting	Description
TFSW	1	Alternate framing
INVTFS	1	Active low frame signal
DTYPE	00	Right-justify data
ISCLK	1	Internal serial clock
TFSR	1	Frame every word
ITFS	1	Internal framing signal
SLEN	1111	16-bit data-word

80C51/80L51 to AD5415 Interface

A serial interface between the DAC and the 80C51 is shown in Figure 43. TXD of the 80C51 drives SCLK of the DAC serial interface, while RXD drives the serial data line, DIN. P3.3 is a bit-programmable pin on the serial port and is used to drive SYNC. When data is to be transmitted to the switch, P3.3 is taken low. The 80C51/80L51 transmits data only in 8-bit bytes; therefore, only eight falling clock edges occur in the transmit cycle. To load data correctly to the DAC, P3.3 is left low after the first eight bits are transmitted, and a second write cycle is initiated to transmit the second byte of data. Data on RXD is clocked out of the microcontroller on the rising edge of TXD and is valid on the falling edge. As a result, no glue logic is required between the DAC and microcontroller interface. P3.3 is taken high following the completion of this cycle. The 80C51 provides the LSB of its SBUF register as the first bit in the data stream. The DAC input register requires its data with the MSB as the first bit received. The transmit routine should take this into account.

Figure 43. 80C51/80L51 to AD5415 Interface

MC68HC11 Interface to AD5415 Interface

Figure 44 is an example of a serial interface between the DAC and the MC68HC11 microcontroller. The serial peripheral interface (SPI) on the MC68HC11 is configured for master mode $(\mathrm{MSTR})=1$, Clock polarity bit $(\mathrm{CPOL})=0$, and the clock phase bit $(\mathrm{CPHA})=1$. The SPI is configured by writing to the SPI control register (SPCR); see the 68HC11 User Manual. SCK of the 68 HC 11 drives the SCLK of the DAC interface, the MOSI output drives the serial data line (DIN) of the AD5516.

The SYNC signal is derived from a port line (PC7). When data is being transmitted to the AD5516, the SYNC line is taken low (PC7). Data appearing on the MOSI output is valid on the falling edge of SCK. Serial data from the 68 HC 11 is transmitted in 8 -bit bytes with only eight falling clock edges occurring in
the transmit cycle. Data is transmitted MSB first. To load data to the DAC, PC7 is left low after the first eight bits are transferred, and a second serial write operation is performed to the DAC. PC7 is taken high at the end of this procedure.

Figure 44.68HC11/68L11 to AD5415 Interface
If the user wants to verify the data previously written to the input shift register, the SDO line can be connected to MISO of the MC68HC11, and, with SYNC low, the shift register clocks data out on the rising edges of SCLK.

MICROWIRE to AD5415 Interface

Figure 45 shows an interface between the DAC and any MICROWIRE-compatible device. Serial data is shifted out on the falling edge of the serial clock, SK , and is clocked into the DAC input shift register on the rising edge of SK, which corresponds to the falling edge of the DAC's SCLK.

Figure 45. MICROWIRE to AD5415 Interface

PIC16C6x/7x to AD5415 Interface

The PIC16C6x/7x synchronous serial port (SSP) is configured as an SPI master with the clock polarity bit $(C K P)=0$. This is done by writing to the synchronous serial port control register (SSPCON); see the PIC16/17 Microcontroller User Manual. In this example, I/O port RA1 is used to provide a SYNC signal and enable the serial port of the DAC. This microcontroller transfers only eight bits of data during each serial transfer operation; therefore, two consecutive write operations are required. Figure 46 shows the connection diagram.

Figure 46. PIC16C6x/7x to AD5415 Interface

PCB LAYOUT AND POWER SUPPLY DECOUPLING

In any circuit where accuracy is important, careful consideration of the power supply and ground return layout helps to ensure the rated performance. The printed circuit board on which the AD5415 is mounted should be designed so that the analog and digital sections are separated, and confined to certain areas of the board. If the DAC is in a system where multiple devices require an AGND-to-DGND connection, the connection should be made at one point only. The star ground point should be established as close as possible to the device.

The DAC should have ample supply bypassing of $10 \mu \mathrm{~F}$ in parallel with $0.1 \mu \mathrm{~F}$ on the supply located as close to the package as possible, ideally right up against the device. The $0.1 \mu \mathrm{~F}$ capacitor should have low effective series resistance (ESR) and effective series inductance (ESI), like the common ceramic types that provide a low impedance path to ground at high frequencies, to handle transient currents due to internal logic switching. Low ESR $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ tantalum or electrolytic capacitors should also be applied at the supplies to minimize transient disturbance and filter out low frequency ripple.

Fast switching signals such as clocks should be shielded with digital ground to avoid radiating noise to other parts of the board, and should never be run near the reference inputs.

Avoid crossover of digital and analog signals. Traces on opposite sides of the board should run at right angles to each other. This reduces the effects of feedthrough on the board. A microstrip technique is by far the best, but not always possible with a
double-sided board. In this technique, the component side of the board is dedicated to the ground plane while signal traces are placed on the soldered side.

It is good practice to employ compact, minimum lead length PCB layout design. Leads to the input should be as short as possible to minimize IR drops and stray inductance.

The PCB metal traces between $V_{\text {REF }}$ and R_{FB} should also be matched to minimize gain error. To maximize on high frequency performance, the I-to-V amplifier should be located as close to the device as possible.

EVALUATION BOARD FOR THE DAC

The evaluation board consists of an AD5415 DAC and a current-to-voltage amplifier, AD8065. Included on the evaluation board is a 10 V reference, ADR01. An external reference can also be applied via an SMB input.

The evaluation kit consists of a CD-ROM with self-installing PC software to control the DAC. The software allows the user to write a code to the device

POWER SUPPLIES FOR THE EVALUATION BOARD

The board requires $\pm 12 \mathrm{~V}$ and +5 V supplies. The $+12 \mathrm{~V} \mathrm{~V}_{\mathrm{DD}}$ and $\mathrm{V}_{\text {ss }}$ are used to power the output amplifier, while the +5 V is used to power the DAC ($\mathrm{V}_{\mathrm{DDI}}$) and transceivers (V_{CC}).

Both supplies are decoupled to their respective ground plane with $10 \mu \mathrm{~F}$ tantalum and $0.1 \mu \mathrm{~F}$ ceramic capacitors.

Figure 47. Schematic of the AD5415 Evaluation Board

Figure 48. Component-Side Artwork

Figure 49. Silkscreen—Component-Side View (Top)

Figure 50. Solder-Side Artwork
Table 13. Overview of AD54xx Devices

Part No.	Resolution	No. DACs	INL(LSB)	Interface	Package	Features
AD5424	8	1	± 0.25	Parallel	RU-16, CP-20	10 MHz BW, $17 \mathrm{~ns} \overline{\mathrm{CS}}$ Pulse Width
AD5426	8	1	± 0.25	Serial	RM-10	10 MHz BW, 50 MHz Serial
AD5428	8	2	± 0.25	Parallel	RU-20	$10 \mathrm{MHz} \mathrm{BW}, 17 \mathrm{~ns} \overline{\mathrm{CS}}$ Pulse Width
AD5429	8	2	± 0.25	Serial	RU-10	10 MHz BW, 50 MHz Serial
AD5450	8	1	± 0.25	Serial	RJ-8	10 MHz BW, 50 MHz Serial
AD5432	10	1	± 0.5	Serial	RM-10	10 MHz BW, 50 MHz Serial
AD5433	10	1	± 0.5	Parallel	RU-20, CP-20	10 MHz BW, $17 \mathrm{~ns} \overline{\mathrm{CS}}$ Pulse Width
AD5439	10	2	± 0.5	Serial	RU-16	10 MHz BW, 50 MHz Serial
AD5440	10	2	± 0.5	Parallel	RU-24	10 MHz BW, $17 \mathrm{~ns} \overline{\mathrm{CS}}$ Pulse Width
AD5451	10	1	± 0.25	Serial	RJ-8	10 MHz BW, 50 MHz Serial
AD5443	12	1	± 1	Serial	RM-10	10 MHz BW, 50 MHz Serial
AD5444	12	1	± 0.5	Serial	RM-8	10 MHz BW, 50 MHz Serial
AD5415	12	2	± 1	Serial	RU-24	10 MHz BW, 58 MHz Serial
AD5445	12	2	± 1	Parallel	RU-20, CP-20	10 MHz BW, $17 \mathrm{~ns} \overline{\mathrm{CS}}$ Pulse Width
AD5447	12	2	± 1	Parallel	RU-24	10 MHz BW, $17 \mathrm{~ns} \overline{\mathrm{CS}}$ Pulse Width
AD5449	12	2	± 1	Serial	RU-16	10 MHz BW, 50 MHz Serial
AD5452	12	1	± 0.5	Serial	RJ-8, RM-8	10 MHz BW, 50 MHz Serial
AD5446	14	1	± 1	Serial	RM-8	10 MHz BW, 50 MHz Serial
AD5453	14	1	± 2	Serial	UJ-8, RM-8	10 MHz BW, 50 MHz Serial
AD5553	14	1	± 1	Serial	RM-8	4 MHz BW, 50 MHz Serial Clock
AD5556	14	1	± 1	Parallel	RU-28	4 MHz BW, 20 ns WR Pulse Width
AD5555	14	2	± 1	Serial	RM-8	4 MHz BW, 50 MHz Serial Clock
AD5557	14	2	± 1	Parallel	RU-38	4 MHz BW, 20 ns WR Pulse Width
AD5543	16	1	± 2	Serial	RM-8	4 MHz BW, 50 MHz Serial Clock
AD5546	16	1	± 2	Parallel	RU-28	4 MHz BW, 20 ns WR Pulse Width
AD5545	16	2	± 2	Serial	RU-16	4 MHz BW, 50 MHz Serial Clock
AD5547	16	2	± 2	Parallel	RU-38	4 MHz BW, 20 ns WR Pulse Width

AD5415

OUTLINE DIMENSIONS

0.10 COPLANARITY

COMPLIANT TO JEDEC STANDARDS MO-153AD
Figure 51. 24-Lead Thin Shrink Small Outline Package [TSSOP] (RU-24)
Dimensions shown in millimeters

ORDERING GUIDE

Model	Resolution	INL (LSBs)	Temperature Range	Package Description	Package Option
AD5415YRU	12	± 1	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TSSOP	RU- 24
AD5415YRU-REEL	12	± 1	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TSSOP	RU-24
AD5415YRU-REEL7	12	± 1	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TSSOP	RU- 24
EVAL-AD5415EB			Evaluation Kit		

[^0]: ${ }^{1}$ Falling or rising edge as determined by the control bits of serial word. Strong or weak SDO driver selected via the control register.

