

Quad +15V 256-Step DigiPOTs with Pin Selectable SPI / I²C Digital Interface

Preliminary Technical Data

AD5263

FEATURES

256 Position

4-Channel (Independently Programmable)

20k, 50k, 200k Ohms

Low Temperature Coefficient 50ppm/°C

Selectable Digital Interface (3-Wire SPI Compatible or 2-Wire I²C Compatible Serial Data Input)

Operating temperature range -40 to 125°C

+5 to +15V Single-Supply; ±5V Dual-Supply Operation

APPLICATIONS

Mechanical Potentiometer Replacement
Optical Network Laser LED Adjust
Instrumentation: Gain, Offset Adjustment
Stereo Channel Audio Level Control
Automotive Electronics Adjustment
Programmable Voltage to Current Conversion
Programmable Filters, Delays, Time Constants
Line Impedance Matching
Low Resolution DAC Replacement

GENERAL DESCRIPTION

The AD5263 is the industry first quad channel, 256 position, digital potentiometer¹ selectable digital interface. These devices perform the same electronic adjustment function as mechanical potentiometers or variable resistor with enhanced resolution, solidstate reliability, and superior low temperature coefficient performance. Each Channel of the AD5263 contains a fixed resistor with a wiper contact that taps the fixed resistor value at a point determined by a digital code loaded into the 3 wire SPI or 2-wire I²C compatible serial-input register. The resistance between the wiper and either end point of the fixed resistor varies linearly with respect to the digital code transferred into the RDAC latch¹. The variable resistor offers a completely programmable value of resistance, between the A terminal and the wiper or the B terminal and the wiper. The fixed A to B terminal resistance of 20k, 50k or $200k\Omega$ has a nominal temperature coefficient of 50 ppm/°C. Unlike majority of the digital potentiometers in the market, these devices can operate up to 15V or ±5V provided proper supply voltages are furnished.

The AD5263 are available in thin narrow body TSSOP-24. All parts are guaranteed to operate over the extended automotive temperature range of -40° C to $+125^{\circ}$ C.

Functional Block Diagram RDAC 4 RDAC 1 RDAC 2 RDAC 3 REGISTER REGISTER REGISTER REGISTER AD5263 ADDRESS DECODER CLK /SCL SDI / SDA SERIAL INPUT CS / ADO SPL/I2C REGISTER SDO / 01

Figure 1 Normalized Gain Flatness Versus Frequency.

08 AUG '02, REV PrD

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 U.S.A.
Tel: 781/329-4700 World Wide Web Site: http://www.analog.com
Fax: 781/326-8703 © Analog Devices, Inc., 2002

Quad +15V Digital Potentiometers

AD5263

ELECTRICAL CHARACTERISTICS 20K, 50K, 200K OHM VERSION (VDD = +5V, VSS = -5V, VL = +5V,

 $V_A = +V_{DD}$, $V_B = 0V$, $-40^{\circ}C < T_A < +125^{\circ}C$ unless otherwise noted.) **Parameter** Symbol **Conditions** Min Typ¹ Units Max DC CHARACTERISTICS RHEOSTAT MODE Specifications apply to all VRs Resistor Differential NL² R-DNL R_{WB}, V_A=NC -1 ±1/4 +1 LSB Resistor Nonlinearity² R-INL -2 +2 R_{WB}, V_A=NC $\pm 1/2$ LSB $T_A = 25^{\circ}C$ Nominal resistor tolerance3 ΔR_{AB} -30 30 % Resistance Temperature Coefficient Wiper = No Connect 30 ppm/°C $\Delta R_{AB}/\Delta T$ $I_W = 1 \text{ V/R}_{AB}, V_{DD} = +5 \text{ V}$ 50 100 Ω Wiper Resistance R_{W} DC CHARACTERISTICS POTENTIOMETER DIVIDER MODE Specifications apply to all VRs Resolution 8 Bits Differential Nonlinearity4 DNL -1 ±1/4 +1 LSB Integral Nonlinearity4 INL -2 ±1/2 +2 LSB Voltage Divider Temperature Coefficient $\Delta V_{M}/\Delta T$ Code = 40H5 ppm/°C Full-Scale Error V_{WFSE} Code = FFH -2 -1 +0 LSB Zero-Scale Error V_{WZSE} Code = 00H0 +1 +2 LSB **RESISTOR TERMINALS** Voltage Range⁵ $V_{A.B.W}$ V_{SS} V_{DD} ٧ $\mathsf{C}_{\mathsf{A},\mathsf{B}}$ Capacitance⁶ Ax, Bx f = 1 MHz, measured to GND, Code = 40_H **TBD** pF pF Capacitance⁶ Wx f = 1 MHz, measured to GND, Code = 40_H TBD C_W $V_A = V_B = V_{DD} / 2$ Common-Mode Leakage Ісм 1 nΑ **DIGITAL INPUTS** Input Logic High V_{IH} 2.4 ٧ V_{IL} V Input Logic Low 8.0 Input Logic High V_{IH} $V_L = +3V, V_{SS} = 0V$ ٧ 2.1 Input Logic Low V_{IL} $V_L = +3V, V_{SS} = 0V$ 0.6 V $V_{IN} = 0V \text{ or } +5V$ Input Current $I_{\rm IL}$ ±1 μΑ Input Capacitance⁶ C_{IL} 5 pF **DIGITAL Output** 2.4 5.5 01,02 V_{OH} IOH=0.4mA ٧ 01,02 V_{OL} $I_{OI} = -1.6 \text{mA}$ 0 0.4 V SDA V_{OL} $I_{OL} = -6mA$ 0.6 V **SDA** V_{OL} $I_{OL} = -3mA$ 0.4 V Three-State Leakage Current $V_{IN} = 0V \text{ or } +5V$ I_{OZ} ±1 μΑ Output Capacitance⁶ 3 8 C_{OZ} pF POWER SUPPLIES Logic Supply V_{I} 2.7 5.5 ٧ Power Single-Supply Range ٧ $V_{SS} = 0V$ 5 16.5 $V_{DD RANGE}$ Power Dual-Supply Range $V_{\rm DD/SS\ RANGE}$ ±4.5 ±5.5 ٧ μΑ Logic Supply Current I_{\parallel} $V_1 = +5V$ 60 Positive Supply Current $V_{III} = +5V \text{ or } V_{II} = 0V$ 1 I_{DD} μΑ μΑ **Negative Supply Current** $V_{SS} = -5V$ 1 I_{SS} Power Dissipation9 V_{IH} = +5V or V_{II} = 0V, V_{DD} = +5V, V_{SS} = -5V P_{DISS} 0.6 mWPower Supply Sensitivity **PSS** $\Delta V_{DD} = +5V \pm 10\%$ 0.0002 0.005 %/% DYNAMIC CHARACTERISTICS^{6, 10} Bandwidth -3dB BW 20K 400 KHz V_{Δ} =1Vrms, V_{R} = 0V, f=1KHz, R_{AB} = 20K Ω **Total Harmonic Distortion** THD_{W} 0.008 % $V_A = 10V$, $V_B = 0V$, ± 1 LSB error band 2 V_w Settling Time t_S μs $R_{WB} = 10K\Omega$, f = 1KHz, RS = 0Resistor Noise Voltage 9 nV√Hz $e_{\text{N WB}}$

Quad +15V Digital Potentiometers

AD5263

μs

ELECTRICAL CHARACTERISTICS 20K, 50K, 200K OHM VERSION (VDD = +5V, VSS = -5V, VL = +5V,

 $V_A = +V_{DD}$, $V_B = 0V$, $-40^{\circ}C < T_A < +125^{\circ}C$ unless otherwise noted.) **Parameter Symbol Conditions** Min Typ¹ Max Units SPI (DIS='0') INTERFACE TIMING CHARACTERISTICS applies to all parts (Notes 6,12) Input Clock Pulse Width Clock level high or low 50 t_{CH}, t_{CL} ns Data Setup Time 20 ns t_{DS} Data Hold Time 20 ns t_{DH} CLK to SDO Propagation Delay¹³ $R_L = 1K\Omega$, $C_L < 20pF$ 1 150 t_{PD} ns CS Setup Time 20 $t_{\text{CSS}} \\$ ns CS High Pulse Width 40 ns t_{CSW} Reset Pulse Width 90 t_{RS} ns CLK Fall to CS Rise Hold Time 0 t_{CSH} ns CS Rise to Clock Rise Setup 10 t_{CS1} ns I²C (DIS='1') INTERFACE TIMING CHARACTERISTICS applies to all parts(Notes 6,12) SCL Clock Frequency 0 400 KHz t_{BUF} Bus free time between STOP & START t_1 1.3 μs t_{HD:STA} Hold Time (repeated START) t_2 After this period the first clock pulse is generated 0.6 μs t_{LOW} Low Period of SCL Clock 1.3 t_3 us tHIGH High Period of SCL Clock t_4 0.6 US t_{SU:STA} Setup Time For START Condition t_5 0.6 us t_{HD:DAT} Data Hold Time 0 0.9 t_6 μs t_{SU:DAT} Data Setup Time 100 t₇ ns t_F Fall Time of both SDA & SCL signals t₈ 300 ns t_R Rise Time of both SDA & SCL signals 300 t9 ns

NOTES:

- 1. Typicals represent average readings at +25 °C and $V_{DD} = +5V$, $V_{SS} = -5V$.
- Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper positions. R-DNL measures the
 relative step change from ideal between successive tap positions. Parts are guaranteed monotonic. I_W = V_{DD}/R for both V_{DD}=+5V, V_{SS}=-5V.

0.6

3. $V_{AB} = V_{DD}$, Wiper $(V_W) = No$ connect

t_{SU:STO} Setup time for STOP Condition

- INL and DNL are measured at V_W with the RDAC configured as a potentiometer divider similar to a voltage output D/A converter. VA = V_{DD} and V_B = 0V. DNL specification limits of ±1LSB maximum are Guaranteed Monotonic operating conditions.
- 5. Resistor terminals A, B, W have no limitations on polarity with respect to each other
- Guaranteed by design and not subject to production test.
- 7. Measured at the Ax terminals. All Ax terminals are open circuited in shutdown mode.
- 8. Worst case supply current consumed when input all logic-input levels set at 2.4V, standard characteristic of CMOS logic.

t₁₀

- P_{DISS} is calculated from (I_{DD} x V_{DD}). CMOS logic level inputs result in minimum power dissipation.
- 10. All dynamic characteristics use V_{DD} = +5V, V_{SS} = -5V, V_L = +5V
- 11. Measured at a V_W pin where an adjacent V_W pin is making a full-scale voltage change.
- 12. See timing diagram for location of measured values. All input control voltages are specified with t_R=t_F=2ns(10% to 90% of +3V) and timed from a voltage level of 1.5V. Switching characteristics are measured using V_L = +5V.
- 13. Propagation delay depends on value of V_{DD}, R_L, and C_L see applications text.
- 14. The AD5260/AD5262 contains 1,968 transistors. Die Size: 89mil x 105mil, 9,345sq. mil.

Quad +15V Digital Potentiometers

AD5263

ABSOLUTE MAXIMUM RATINGS (T_A	= $+25$ °C, unless
otherwise noted)	
V _{DD} to GND	0.3, +15V
V _{SS} to GND	0V, -7V
V _{DD} to V _{SS}	+15V
V _A , V _B , V _W to GND	V _{SS} , V _{DD}
$A_X - B_X, A_X - W_X, B_X - W_X$	
Intermittent ²	±20mA
Continuous	±2mA
Digital Inputs & Output Voltage to GND	0V, +7V
Operating Temperature Range	40°C to +85°C
Maximum Junction Temperature (T _J MAX)	+150°C
Storage Temperature	65°C to +150°C
Lead Temperature (Soldering, 10 sec)	+300°C
Vapor Phase (60 sec)	+215 °C

Infrared (15 sec)	+220 °C
Thermal Resistance * θ_{JA} ,	
TSSOP-24	143°C/W
*Package Power Dissipation = (T _J MA)	X - T _A) / θ _{JA}

NOTES

- 1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
- 2. Maximum terminal current is bounded by the maximum current handling of the switches, maximum power dissipation of the package, and maximum applied voltage across any two of the A, B, and W terminals at a given resistance.

ORDERING GUIDE

Model	R_{AB}	Temp	Package	Package	# Parts per	Top Mark*
	$(k\Omega)$		Description	Option	Container	
AD5263BRU20	20	-40/+125°C	TSSOP-24	RU-24	62	AD5263B20
AD5263BRU20-REEL7	20	-40/+125°C	TSSOP-24	RU-24	1,000	AD5263B20
AD5263BRU50	50	-40/+125°C	TSSOP-24	RU-24	62	AD5263B50
AD5263BRU50-REEL7	50	-40/+125°C	TSSOP-24	RU-24	1,000	AD5263B50
AD5263BRU200	200	-40/+125°C	TSSOP-24	RU-24	62	AD5263B200
AD5263BRU200-REEL7	200	-40/+125°C	TSSOP-24	RU-24	1,000	AD5263B200

^{*}Line 1 contains part number, line 2 branding containing differentiating detail by part type and ADI logo symbol, line 3 contains date code YWW.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD5263 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

SDO (Data Out)

CLK

cs

Vout 0٧

 V_{DD}

Quad +15V Digital Potentiometers

AD5263

tPD MAX

tcsH1

SPI Compatible Digital Interface (DIS='0')

TABLE IA: SPI 10-Bit Serial-Data Word

Forma	ιt
	••

ADDR		DATA											
B9	B8	B7	B6	B5	B4	B3	B2	B1	B0				
A1	A0	D7	D6	D5	D4	D3	D2	D1	D0				
		MSB							LSB				
2^{9}		27							2^{0}				

Figure 1B. Detail SPI Timing Diagram

A'x or D'x

A'x or D'x

Figure 1A. SPI Timing Diagram

I²C Compatible Digital Interface (DIS='1')

TABLE IIA: I²C Write Mode Data Word Format

S	0	1	0	1	1	A D 1	A D 0	W	Α	Х	A 1	A 0	R S	S D	0	0 2	Х	Α	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0	Α	Р
			Slav	e Ado	dress	Byte				Instruction Byte								Data	Byte	;								

TABLE IIB: I²C Read Mode Data Word Format:

S	0	1	0	1	1	0	A D 0	R	Α	D 7	D 8	D 5	D 4	D 3	D 2	D 1	D 0	Α	Р
	Slave Address Byte										Data	Byte							

S = Start Condition

P = Stop Condition

 $\mathbf{A} = Acknowledge$

AD1, AD0 = Package pin programmable address bits, Must match with the logic states at pins AD1, AD0

A1, A0 = RDAC sub address select

RS = Software Reset wiper (A1, A0) to mid scale position

SD = Shutdown active high, ties wiper (A1, A0) to terminal A, opens terminal B, RDAC register contents are not disturbed. To exit shutdown a command SD = '0' must be executed for each RDAC (A1, A0).

 $\overline{\mathbf{W}} = \text{Write} = \mathbf{0}$

 $\mathbf{R} = \text{Read} = '1'$

D7,D6,D5,D4,D3,D2,D1,D0 = Data Bits

X = Don't Care

Figure 2. I²C Compatible Detail Timing Diagram

08 AUG '02. REV PrD

Quad +15V Digital Potentiometers

AD5263

	AD520	63 PIN CONFI	GURATION	9	DIS	Digital Interface Select (SPI/I ² C Select); SPI when DIS='0', I ² C when DIS='1'
	B1	1	24 B2	10	V_{LOGIC}	Logic Supply Voltage, needs to be
	A1	2	23 A2		Logic	same voltage as the digital logic
	W1	3	22 W2			controlling the AD5263.
	В3	4	21 B4	11	SDI/SDA	SDI = 3-wire Serial Data Input/ SDA =
	DJ	AD5263	21 64			2-wire Serial Data Input/Output
	A3	5 TSSOP-24	20 A4	12	CLK/SCL	Serial Clock Input
	W3	6	19 W4	13	CS/AD0	Chip Select / I ² C Compatabile Device
	V_{DD}	7	18 V _{SS}			Address Bit 0
				14	RESB/AD1	RESETB/I ² C Compatabile Device
	GND	8	17 NC/O2			Address Bit 1
	DIS	9	16 SDO/O1	15	SHDN	Shutdown Ties wiper to terminal A,
	V_{LOGIC}	10	15 SHDN			opens terminal B
				16	SDO/O1	Serial Data Output, Open Drain
	SDI/SDA	11	14 RESB/AD1			transistor requires pull-up
	CLK/SCL	12	13 CS/AD0			resistor/Digital Output O1, can be used
						to drive external logic
				17	NC/O2	No Connection/Digital Output O2, can
						be used to drive external logic
TAB	L E III: AD5	263 PIN Descri	ptions	18	V_{SS}	Negative power supply, specified for
Pin	Name	Description	n			operation from 0 to -5V.
1	B1	Resistor terr	ninal B1	19	W4	Wiper terminal W4 (ADDR=11)
2	A1	Resistor terr	ninal A1 (ADDR=00)	20	A4	Resistor terminal A4
3	W1	Wiper termi	nal W1	21	B4	Resistor terminal B4
4	В3	Resistor terr	ninal B3	22	W2	Wiper terminal W2 (ADDR=01)
5	A3	Resistor terr	ninal A3	23	A2	Resistor terminal A2
6	W3		nal W3 (ADDR=10)	24	B2	Resistor terminal B2
7	V_{DD}	Positive pov	ver supply, specified for			
		+5V to +15V	V operation			
8	GND	Ground				

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm)

24-Lead Thin Surface Mount TSSOP Package (RU-24)

08 AUG '02, REV PrD