FEATURES

256 Position
4-Channel (Independently Programmable)
20k, 50k, 200k Ohms
Low Temperature Coefficient $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Selectable Digital Interface (3-Wire SPI Compatible or 2-Wire I ${ }^{2}$ C Compatible Serial Data Input)
Operating temperature range -40 to $125^{\circ} \mathrm{C}$
+5 to +15 V Single-Supply; $\pm 5 \mathrm{~V}$ Dual-Supply Operation

APPLICATIONS

Mechanical Potentiometer Replacement
Optical Network Laser LED Adjust
Instrumentation: Gain, Offset Adjustment
Stereo Channel Audio Level Control
Automotive Electronics Adjustment
Programmable Voltage to Current Conversion
Programmable Filters, Delays, Time Constants
Line Impedance Matching
Low Resolution DAC Replacement

GENERAL DESCRIPTION

The AD5263 is the industry first quad channel, 256 position, digital potentiometer ${ }^{1}$ selectable digital interface. These devices perform the same electronic adjustment function as mechanical potentiometers or variable resistor with enhanced resolution, solidstate reliability, and superior low temperature coefficient performance. Each Channel of the AD5263 contains a fixed resistor with a wiper contact that taps the fixed resistor value at a point determined by a digital code loaded into the 3 wire SPI or 2-wire $I^{2} C$ compatible serial-input register. The resistance between the wiper and either end point of the fixed resistor varies linearly with respect to the digital code transferred into the RDAC latch ${ }^{1}$. The variable resistor offers a completely programmable value of resistance, between the A terminal and the wiper or the B terminal and the wiper. The fixed A to B terminal resistance of $20 \mathrm{k}, 50 \mathrm{k}$ or $200 \mathrm{k} \Omega$ has a nominal temperature coefficient of $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Unlike majority of the digital potentiometers in the market, these devices can operate up to 15 V or $\pm 5 \mathrm{~V}$ provided proper supply voltages are furnished.

The AD5263 are available in thin narrow body TSSOP-24. All parts are guaranteed to operate over the extended automotive temperature range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

08 AUG '02, REV PrD
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

Figure 1 Normalized Gain Flatness Versus Frequency.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 U.S.A.
Tel: 781/329-4700
World Wide Web Site: http://www.analog.com Fax: 781/326-8703
© Analog Devices, Inc., 2002

ELECTRICAL CHARACTERISTICS 20K, 50K, 200K OHM VERSION $\left(\mathrm{V}_{D D}=+5 \mathrm{~V}, \mathrm{~V}_{S S}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}\right.$, $V_{A}=+V_{D D}, V_{B}=0 V,-40^{\circ} \mathrm{C}<T_{A}<+125^{\circ} \mathrm{C}$ unless otherwise noted.)

$V_{A}=+V_{\text {D }}, V^{\text {Parameter }}$	Symbol	Conditions	Min	Typ ${ }^{1}$	Max	Units
DC CHARACTERISTICS RHEOSTAT MO	Specifications	apply to all VRs				
Resistor Differential NL^{2}	R-DNL	$\mathrm{R}_{\mathrm{wB}}, \mathrm{V}_{\mathrm{A}}=\mathrm{NC}$	-1	$\pm 1 / 4$	+1	LSB
Resistor Nonlinearity ${ }^{2}$	R-INL	$\mathrm{R}_{\mathrm{WB}}, \mathrm{V}_{A}=\mathrm{NC}$	-2	$\pm 1 / 2$	+2	LSB
Nominal resistor toerance ${ }^{3}$	$\Delta \mathrm{RAB}^{\text {a }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-30		30	\%
Resistance Temperature Coefficient	$\Delta \mathrm{R}_{\text {AB }} / \Delta \mathrm{T}$	Wiper = No Connect		30		ppm $/{ }^{\circ} \mathrm{C}$
Wiper Resistance	R_{w}	$\mathrm{I}_{\mathrm{W}}=1 \mathrm{~V} / \mathrm{RAB}, \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$		50	100	Ω
DC CHARACTERISTICS POTENTIOMETER DIVIDER MODE Specifications apply to all VRs						
Resolution	N		8			Bits
Differential Nonlinearity ${ }^{4}$	DNL		-1	$\pm 1 / 4$	+1	LSB
Integral Nonlinearity ${ }^{4}$	INL		-2	$\pm 1 / 2$	+2	LSB
Voltage Divider Temperature Coefficient	$\Delta V_{W} / \Delta T$	Code $=40 \mathrm{H}$		5		ppm $/{ }^{\circ} \mathrm{C}$
Full-Scale Error	$\mathrm{v}_{\text {WFSE }}$	Code $=$ FFH	-2	-1	+0	LSB
Zero-Scale Error	$\mathrm{V}_{\text {w } 2 S E}$	Code $=00 \mathrm{H}$	0	+1	+2	LSB
RESISTOR TERMINALS						
Voltage Range ${ }^{5}$	$\mathrm{V}_{\mathrm{A}, \mathrm{B}, \mathrm{W}}$		vss		$V_{\text {D }}$	v
Capacitance ${ }^{6} \mathrm{Ax}, \mathrm{Bx}$	${ }_{C A, B}$	$\mathrm{f}=1 \mathrm{MHz}$, measured to $\mathrm{GND}, \mathrm{Code}=40 \mathrm{H}$		tBD		pF
Capacitance ${ }^{6} \mathrm{Wx}$	$\mathrm{C}_{\text {w }}$	$\mathrm{f}=1 \mathrm{MHz}$, measured to GND , Code $=40 \mathrm{H}$		tBD		pF
Common-Mode Leakage	Icm	$V_{A}=V_{B}=V_{\text {DO }} / 2$		1		nA
DIGITAL INPUTS						
Input Logic High			2.4			v
Input Logic Low	$\mathrm{v}_{\text {IL }}$				0.8	v
Input Logic High	$\mathrm{V}_{\text {H }}$	$\mathrm{V}_{\mathrm{L}}=+3 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$	2.1			v
Input Logic Low	$\mathrm{v}_{\text {IL }}$	$\mathrm{V}_{\mathrm{L}}=+3 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$			0.6	v
Input Current	$1 /$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or +5 V			± 1	$\mu \mathrm{A}$
Input Capacitance ${ }^{6}$				5		pF
DIGITAL Output						
01, 02	V OH	$1 \mathrm{loh}=0.4 \mathrm{~mA}$	2.4		5.5	v
01, 02	Voı	$1 \mathrm{lo}=-1.6 \mathrm{~mA}$	0		0.4	v
SDA	Vol	$\mathrm{loL}=-6 \mathrm{~mA}$			0.6	v
SDA	Vol	$\mathrm{loL}=-3 \mathrm{~mA}$			0.4	v
Three-State Leakage Current	loz	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or +5 V			± 1	$\mu \mathrm{A}$
Output Capacitance ${ }^{6}$	$\mathrm{Coz}^{\text {c }}$			3	8	pF
POWER SUPPLIES						
Logic Supply	v_{L}		2.7		5.5	v
Power Single-Supply Range	$\mathrm{V}_{\text {DD }}$ Range	$\mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}$	5		16.5	v
Power Dual-Supply Range	$\mathrm{V}_{\text {d/Ss }}$ Range		± 4.5		± 5.5	v
Logic Supply Current		$\mathrm{V}_{\mathrm{L}}=+5 \mathrm{~V}$			60	$\mu \mathrm{A}$
Positive Supply Current	$\mathrm{IDO}_{\text {d }}$	$\mathrm{V}_{\mathrm{HH}}=+5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{LL}}=0 \mathrm{~V}$			1	$\mu \mathrm{A}$
Negative Supply Current	$\mathrm{I}_{\text {s }}$	$V_{s s}=-5 \mathrm{~V}$			1	$\mu \mathrm{A}$
Power Dissipation ${ }^{9}$	Polss	$\mathrm{V}_{\text {IH }}=+5 \mathrm{~V}$ or $\mathrm{V}_{\text {LI }}=0 \mathrm{~V}, \mathrm{~V}_{\text {Do }}=+5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-5 \mathrm{~V}$			0.6	mW
Power Supply Sensitivity	PSS	$\Delta V_{D D}=+5 \mathrm{~V} \pm 10 \%$		0.0002	0.005	\%1\%
DYNAMIC CHARACTERISTICS ${ }^{6,10}$						
Bandwidth -3dB		$\mathrm{R}_{\text {AB }}=20 \mathrm{~K} \Omega$		400		
Total Harmonic Distortion	TH_{W}	$\mathrm{V}_{\mathrm{A}}=1 \mathrm{Vrms}, \mathrm{V}_{\mathrm{B}}=0 \mathrm{OV}, \mathrm{f}=1 \mathrm{KHz}, \mathrm{R}_{\text {AB }}=20 \mathrm{~K} \Omega$		0.008		\%
V_{w} Settling Time		$\mathrm{V}_{A}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=0 \mathrm{OV}, \pm 1 \mathrm{LSB}$ error band		2		$\mu \mathrm{s}$
Resistor Noise Voltage	$\mathrm{e}_{\text {N_ }}$ we	$\mathrm{R}_{\text {WB }}=10 \mathrm{~K} \Omega, \mathrm{f}=1 \mathrm{KHz}, \mathrm{RS}=0$		9		nVVHz

ELECTRICAL CHARACTERISTICS 20K, 50K, 200K OHM VERSION ($\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{v}_{\mathrm{SS}}=-5 \mathrm{~V}, \mathrm{v}_{\mathrm{L}}=+5 \mathrm{~V}$,
$\mathrm{V}_{\mathrm{A}}=+\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{B}}=0 \mathrm{~V},-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C}$ unless otherwise noted.)

Parameter	Symbol	Conditions	Min	Typ ${ }^{1}$	Max	Units
SPI (DIS='0') INTERFACE TIMING CHARACTERISTICS applies to all parts (Notes 6,12)						
Input Clock Pulse Width	$\mathrm{t}_{\mathrm{CH}, \mathrm{t}_{\mathrm{CL}}}$	Clock level high or low	50			ns
Data Setup Time	$t_{\text {DS }}$		20			ns
Data Hold Time	t_{DH}		20			ns
CLK to SDO Propagation Delay ${ }^{13}$	$\mathrm{t}_{\text {PD }}$	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{L}}<20 \mathrm{pF}$	1		150	ns
CS Setup Time	$\mathrm{t}_{\text {cSs }}$		20			ns
CS High Pulse Width	$\mathrm{t}_{\text {cSW }}$		40			ns
Reset Pulse Width	$\mathrm{t}_{\text {RS }}$		90			ns
CLK Fall to CS Rise Hold Time	$\mathrm{t}_{\text {CSH }}$		0			ns
CS Rise to Clock Rise Setup	$\mathrm{t}_{\text {cS1 }}$		10			ns
$1^{2} \mathrm{C}$ ($\mathrm{DIS}^{\prime} \mathbf{l}^{\prime}$) INTERFACE TIMING CHARACTERISTICS applies to all parts(Notes 6,12)						
SCL Clock Frequency	$\mathrm{f}_{\text {SCL }}$		0		400	KHz
$\mathrm{t}_{\text {BUF }}$ Bus free time between STOP \& START	t_{1}		1.3			$\mu \mathrm{s}$
$t_{\text {HD; }}$ STA Hold Time (repeated START)	t_{2}	After this period the first clock pulse is generated	0.6			$\mu \mathrm{s}$
t Low Low Period of SCL Clock	t_{3}		1.3			$\mu \mathrm{s}$
$\mathrm{t}_{\text {HIGH }}$ High Period of SCL Clock	t_{4}		0.6			$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU; }}$ STA Setup Time For START Condition	t5		0.6			$\mu \mathrm{s}$
$\mathrm{t}_{\text {HD; DAT }}$ Data Hold Time	t_{6}		0		0.9	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU;DAT }}$ Data Setup Time	t_{7}		100			ns
t_{F} Fall Time of both SDA \& SCL signals	t_{8}				300	ns
t_{R} Rise Time of both SDA \& SCL signals	t9				300	ns
$\mathrm{t}_{\text {Su;STo }}$ Setup time for STOP Condition	t_{10}		0.6			$\mu \mathrm{s}$

NOTES:

1. Typicals represent average readings at $+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{D D}=+5 \mathrm{~V}, \mathrm{~V}_{S S}=-5 \mathrm{~V}$.
2. Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper positions. R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic. Iw $=V_{D D} / R$ for both $V_{D D}=+5 \mathrm{~V}, \mathrm{~V}_{S S}=-5 \mathrm{~V}$.
3. $\quad \mathrm{V}_{\mathrm{AB}}=\mathrm{V}_{\mathrm{DD}}$, Wiper $\left(\mathrm{V}_{\mathrm{W}}\right)=$ No connect
4. INL and DNL are measured at V_{w} with the RDAC configured as a potentiometer divider similar to a voltage output D / A converter. $V A=V_{D D}$ and $V_{B}=0 V$. DNL specification limits of ± 1 LSB maximum are Guaranteed Monotonic operating conditions.
5. Resistor terminals A, B, W have no limitations on polarity with respect to each other.
6. Guaranteed by design and not subject to production test.
7. Measured at the Ax terminals. All Ax terminals are open circuited in shutdown mode.
8. Worst case supply current consumed when input all logic-input levels set at 2.4 V , standard characteristic of CMOS logic.
9. $P_{\text {DISS }}$ is calculated from ($I_{D D} \times V_{D D}$). CMOS logic level inputs result in minimum power dissipation.
10. All dynamic characteristics use $V_{D D}=+5 \mathrm{~V}, \mathrm{~V}_{S S}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}$.
11. Measured at a V_{W} pin where an adjacent V_{W} pin is making a full-scale voltage change.
12. See timing diagram for location of measured values. All input control voltages are specified with $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2 \mathrm{~ns}(10 \%$ to 90% of $+3 \mathrm{~V})$ and timed from a voltage level of 1.5 V . Switching characteristics are measured using $\mathrm{V}_{\mathrm{L}}=+5 \mathrm{~V}$.
13. Propagation delay depends on value of $\mathrm{V}_{\mathrm{DD}}, \mathrm{R}_{\mathrm{L}}$, and C_{L} see applications text.
14. The AD5260/AD5262 contains 1,968 transistors. Die Size: 89 mil $\times 105$ mil, 9,345 sq. mil.

$$
\begin{aligned}
& \text { Infrared (} 15 \mathrm{sec} \text {).. }+220^{\circ} \mathrm{C} \\
& \text { Thermal Resistance }{ }^{*} \theta_{\mathrm{JA}} \text {, } \\
& \text { TSSOP-24 } \\
& 143^{\circ} \mathrm{C} / \mathrm{W} \\
& { }^{*} \text { Package Power Dissipation }=\left(\mathrm{T}_{\mathrm{J}} \mathrm{MAX}-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{JA}}
\end{aligned}
$$

NOTES

1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2. Maximum terminal current is bounded by the maximum current handling of the switches, maximum power dissipation of the package, and maximum applied voltage across any two of the A, B, and W terminals at a given resistance.

ORDERING GUIDE

Model	R_{AB} $(\mathrm{k} \Omega)$	Temp	Package Description	Package Option	\# Parts per Container	Top Mark*
AD5263BRU20	20	$-40 /+125^{\circ} \mathrm{C}$	TSSOP-24	RU-24	62	AD5263B20
AD5263BRU20-REEL7	20	$-40 /+125^{\circ} \mathrm{C}$	TSSOP-24	RU-24	1,000	AD5263B20
AD5263BRU50	50	$-40 /+125^{\circ} \mathrm{C}$	TSSOP-24	RU-24	62	AD5263B50
AD5263BRU50-REEL7	50	$-40 /+125^{\circ} \mathrm{C}$	TSSOP-24	RU-24	1,000	AD5263B50
AD5263BRU200	200	$-40 /+125^{\circ} \mathrm{C}$	TSSOP-24	RU-24	62	AD5263B200
AD5263BRU200-REEL7	200	$-40 /+125^{\circ} \mathrm{C}$	TSSOP-24	RU-24	1,000	AD5263B200

*Line 1 contains part number, line 2 branding containing differentiating detail by part type and ADI logo symbol, line 3 contains date code YWW.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD5263 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended
 to avoid performance degradation or loss of functionality.

SPI Compatible Digital Interface (DIS='0')

TABLE IA: SPI 10-Bit Serial-Data Word Format

ADDR		DATA							
B9	B8	B7	B6	B5	B4	B3	B2	B1	B0
A1	A0	D7	D6	D5	D4	D3	D2	D1	D0
		MSB							LSB
2^{9}		2^{7}							2^{0}

Figure 1B. Detail SPI Timing Diagram

Figure 1A. SPI Timing Diagram
$\mathbf{I}^{\mathbf{2}} \mathbf{C}$ Compatible Digital Interface (DIS='1')
TABLE IIA: $\mathbf{I}^{\mathbf{2}} \mathbf{C}$ Write Mode Data Word Format

TABLE IIB: $I^{\mathbf{2}} \mathrm{C}$ Read Mode Data Word Format:

$\mathbf{S}=$ Start Condition
$\mathbf{P}=$ Stop Condition
$\mathbf{A}=$ Acknowledge

AD1, AD0 = Package pin programmable address bits, Must match with the logic states at pins AD1, AD0
A1, $\mathbf{A 0}=$ RDAC sub address select
$\mathbf{R S}=$ Software Reset wiper (A1, A0) to mid scale position
$\mathbf{S D}=$ Shutdown active high, ties wiper (A1, A0) to terminal A, opens terminal B, RDAC register contents are not disturbed. To exit shutdown a command $\mathrm{SD}=$ ' 0 ' must be executed for each RDAC
(A1, A0).
$\bar{W}=$ Write $={ }^{\prime} 0$ '
$\mathbf{R}=\operatorname{Read}={ }^{\prime} 1$ '
D7,D6,D5,D4,D3,D2,D1,D0 = Data Bits
X = Don't Care

Figure 2. $I^{2} \mathrm{C}$ Compatible Detail Timing Diagram

PRELIMINARY TECHNICAL DATA

Quad +15V Digital Potentiometers
AD5263
AD5263 PIN CONFIGURATION

TABLE III: AD5263 PIN Descriptions

Pin	Name	Description
1	B1	Resistor terminal B1
2	A1	Resistor terminal A1 (ADDR=00)
3	W1	Wiper terminal W1
4	B3	Resistor terminal B3
5	A3	Resistor terminal A3
6	W3	Wiper terminal W3 (ADDR=10)
7	V $_{\text {DD }}$	Positive power supply, specified for
		+5 V to +15V operation
8	GND	Ground

9
$10 \quad \mathrm{~V}_{\text {LOGIC }}$

11 SDI/SDA
12
13

14 RESB/AD
15
16

$\mathrm{NC} / \mathrm{O} 2$
$18 \quad V_{S S}$
9 W
A4
B4
W2
A2
B2

Digital Interface Select (SPI/I ${ }^{2} \mathrm{C}$ Select); SPI when DIS $={ }^{\prime} 0^{\prime}, I^{2} \mathrm{C}$ when DIS='1'
Logic Supply Voltage, needs to be same voltage as the digital logic controlling the AD5263.
SDI = 3-wire Serial Data Input/ SDA = 2-wire Serial Data Input/Output
CLK/SCL Serial Clock Input
$\overline{\mathrm{CS}} / \mathrm{AD} 0 \quad$ Chip Select / I ${ }^{2} \mathrm{C}$ Compatabile Device Address Bit 0
RESETB $/ I^{2} \mathrm{C}$ Compatabile Device Address Bit 1
SHDN Shutdown -- Ties wiper to terminal A, opens terminal B
Serial Data Output, Open Drain transistor requires pull-up resistor/Digital Output O1, can be used to drive external logic
No Connection/Digital Output O2, can be used to drive external logic
Negative power supply, specified for operation from 0 to -5 V .
Wiper terminal W4 (ADDR=11)
Resistor terminal A4
Resistor terminal B4
Wiper terminal W2 (ADDR=01)
Resistor terminal A2
Resistor terminal B2

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm)
24-Lead Thin Surface Mount TSSOP Package (RU-24)

