austriamicrosystems

Serially Interfaced, 8-Digit LED Driver AS1100

Key Features

10MHz Serial Interface
Individual LED Segment Control
Decode/No-Decode Digit Selection
$20 \mu \mathrm{~A}$ Low-Power Shutdown (Data Retained)
Extremely low Operating Current 0.5 mA in open loop
Digital and Analog Brightness Control
Display Blanked on Power-Up
Drive Common-Cathode LED Display
Software Reset ${ }^{1}$
Optional External clock
24-Pin DIP and SO Packages
Fully compatible to MAX7219

General Description

The AS1100 is an LED driver for 7 segment numeric displays of up to 8 digits. The AS1100 can be programmed via a conventional 4 wire serial interface. It includes a BCD code-B decoder, a multiplex scan circuitry, segment and display drivers and a 64 Bit memory. The memory is used to store the LED settings, so that continuous reprogramming is not necessary.

Pin Configuration

[^0]Every individual segment can be addressed and updated separately. Only one external resistor is required to set the current through the LED display. Brightness can be controlled either in an analog or digital way. The user can choose the internal code-B decoder to display numeric digits or to address each segment directly. The AS1100 features an extremely low shutdown current of only $20 \mu \mathrm{~A}$. and an operational current of less than $500 \mu \mathrm{~A}$. The number of visible digits can be programmed as well. The AS1100 can be reset by software and an external clock can be used. Several test modes support easy debugging.
The AS1100 is fully compatible to the MAX 7219. AS1100 is offered in a 24 pins PDIP and SOIC package.

Applications

- Bar-Graph Displays
- Industrial Controllers
- Panel Meters
- LED Matrix Displays
- White Goods

Typical Application Circuit

Absolute Maximum Ratings

Voltage (with respect to GND)

VDD	-0.3V to 6V
DIN, CLK, LOAD	-0.3V to 6V
All Other Pins	-0.3V to (VDD +0.3V)
Current	
DIG0-DIG7 Sink Current	500 mA
SEGA-G, DP Source Current	100 mA
Continuous Power Dissipation ($\mathrm{TA}=+85^{\circ} \mathrm{C}$)	
Narrow Plastic DIP (derate $13.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$	1066mW
Wide SO (derate $11.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	941 mW
Operating Temperature Ranges ($\mathrm{T}_{\text {min }}$ to $\mathrm{Tmax}_{\text {ma }}$	
AS1100xL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
AS1100xE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package body temperature ${ }^{2}$	$+240^{\circ} \mathrm{C}$

Electrical Characteristics

(VDD $=5 \mathrm{~V}, \mathrm{Rset}=9.53 \mathrm{k} \Omega \pm 1 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$, unless otherwise noted. $)$

Parameter	Symbol	Conditions	Min	Typ	Max	Units
Operating Supply Voltage	VDD		4.0	5.0	5.5	V
Shutdown Supply Current	IDDso	All digital inputs at VDD or GND, $\mathrm{T}_{\mathrm{A}}=$ $+25^{\circ} \mathrm{C}$		20	50	$\mu \mathrm{A}$
Operating Supply Current	IDD	RSET = open circuit			500	$\mu \mathrm{A}$
		All segments and decimal point on, ISEG $=$ 40 mA		330		mA
Display Scan Rate	fosc	8 digits scanned	500	800	1300	Hz
Digit Drive Sink Current	Idigit	Vout $=0.65 \mathrm{~V}$	320			mA
Segment Drive Source Current	Iseg	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\text {Out }}=(\mathrm{VDD} \mathrm{-1V})$	-30	-40	-45	mA
Segment Drive Current Matching	Δ ISEG			3.0		\%
Digit Drive Source Current	loigit	Digit off, V ${ }_{\text {DIGIT }}=(\mathrm{VDD} \mathrm{-0.3V)}$	-2			mA
Segment Drive Sink Current	Iseg	Segment off, $\mathrm{V}_{\text {SEG }}=0.3 \mathrm{~V}$	5			mA
Logic Inputs						

${ }^{2}$ The reflow peak soldering temperature (body temperature) is specified according IPC/JEDEC J-STD-020B "Moisture/Reflow Sensitivity Classification for non-hermetic Solid State Surface Mount Devices".

Parameter	Symbol	Conditions	Min	Typ	Max	Units
Input Current DIN, CLK, LOAD	IIH, IIL	Vin $=0 \mathrm{~V}$ or VDD	-1		1	$\mu \mathrm{A}$
Logic High Input Voltage	V_{IH}		3.5			V
Logic Low Input Voltage	VIL				0.8	V
Output High Voltage	Vон	DOUT, ISOURCe $=-1 \mathrm{~mA}$	VDD - 1			V
Output Low Voltage	Vol	DOUT, Isink $=1.6 \mathrm{~mA}$			0.4	V
Hysteresis Voltage	VI	DIN, CLK, LOAD		1		V
Timing Characteristics						
CLK Clock Period	tcp		100			ns
CLK Pulse Width High	tch		50			ns
CLK Pulse Width Low	tcı		50			ns
CLK Rise to LOAD Rise Hold Time	tcsh		0			ns
DIN Setup Time	tos		25			ns
DIN Hold Time	toh		0			ns
Output Data Propagation Delay	too	$C_{\text {LOAD }}=50 \mathrm{pF}$			25	ns
LOAD Rising Edge to Next Clock Rising Edge	tıdok		50			ns
Minimum LOAD Pulse High	tcsw		50			ns
Data-to-Segment Delay	tospd				2.25	ms

Pin Description

Pin	Name	Function
1	DIN	Data input. Data is programmed into the 16Bit shift register on the rising CLK edge
$2,3,5-8,10$, 11	DIG 0-DIG 7	8 digit driver lines that sink the current from the common cathode of the display. In shutdown mode the AS1100 switches the outputs to VDD
4,9	GND	both GND pins must be connected
12	CLK	Strobe input. With the rising edge of the LOAD signal the 16 bit of serial data is latched into the register.
13	Clock input. The interface is capable to support clock frequencies up to 10MHz. The serial data is clocked into the internal shift register with the rising edge of the CLK signal. On the DOUT pin the data is applied with the falling edge of CLK.	
$14-17,20-23$	SEG A-G, DP	Seven segment driver lines including the decimal point. When a segment is turned off the output is connected to GND.
18	ISET	The current into IsET determines the peak current through the segments and therefore the brightness.
19	VDD	Positive Supply Voltage (+5V)
24	DOUT	Serial data output for cascading drivers. The output is valid after 16.5 clock cycles. The output is never set to high impedance.

Figure 1: Timing diagram

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

X	X	X	X	Address	MSB	Data	LSB

Table 1: Serial data format (16 bits)

Detailed Description

Serial-Addressing Modes

Programming of the AS1100 is done via the 4 wire serial interface. A programming sequence consists of 16 -bit packages. The data is shifted into the internal 16 Bit register with the rising edge of the CLK signal. With the rising edge of the LOAD signal the data is latched into a digital or control register depending on the address. The LOAD signal must go to high after the $16^{\text {th }}$ rising clock edge. The LOAD signal can also come later but just before the next rising edge of CLK, otherwise data would be lost. The content of the internal shift register is applied 16.5 clock cycles later to the DOUT pin. The data is clocked out at the falling edge of CLK. The Bits of the 16Bitprogramming package are described in table 1 . The first 4 Bits D15-D12 are "don't care, D11-D8 contain the address and D7-D0 contain the data. The first bit is D15, the most significant bit (MSB). The exact timing is given in figure 1.

Digit and Control Registers

The AS1100 incorporates 15 registers, which are listed in Table 2. The digit and control registers are selected via the 4Bit address word. The 8 digit registers are realized with a

64bit memory. Each digit can be controlled directly without rewriting the whole contents. The control registers consist of decode mode, display intensity, number of scanned digits, shutdown, display test and reset/external clock register.

Shutdown Mode

The AS1100 features a shutdown mode, where it consumes only $20 \mu \mathrm{~A}$ current. The shutdown mode is entered via a write to register 0Ch. Then all segment current sources are pulled to ground and all digit drivers are connected to VDD, so that nothing is displayed. All internal digit registers keep the programmed values. The shutdown mode can either be used for power saving or for generating a flashing display by repeatedly entering and leaving the shutdown mode. The AS1100 needs typically 250μ s to exit the shutdown mode. During shutdown the AS1100 is fully programmable. Only the display test function overrides the shutdown mode.

Initial Power-Up

After powering up the system all register are reset, so that the display is blank. The AS1100 starts the shutdown mode. All registers should be programmed for normal operation. The default settings enable only scan of one digit, the internal decoder is disabled, data register and intensity register are set to the minimum value.

Decode-Mode Register

In the AS1100 a BCD decoder is included. Every digit can be selected via register 09h to be decoded. The BCD code consists of the numbers 0-9, E,H, L,P and -. In register 09h a logic high enables the decoder for the appropriate digit. In case that the decoder is bypassed (logic low) the data Bits D7-D0 correspond to the segment lines of the AS1100. In table 4 some possible settings for register 09h are shown. Bit D7, which corresponds to the decimal point, is not affected by the settings of the decoder. Logic high means that the decimal point is displayed. In table 5 the font of the Code B decoder is shown. In table 6 the correspondence of the register to the appropriate segments of a 7 segment display is shown (see figure 2)

Intensity Control and Interdigit Blanking

Brightness of the display can be controlled in an analog way by changing the external resistor ($\mathrm{RSET}_{\mathrm{SE}}$). The current, which flows between VDD and ISET, defines the current that flows through the LEDs. The LED current is 100 times the IsET current. The minimum value of $\mathrm{R}_{\text {SET }}$ should be $9.53 \mathrm{k} \Omega$, which corresponds to 40 mA segment current. The brightness of the display can also be controlled digitally via register OAh. The brightness can be programmed in 16 steps and is shown in table 7. An internal pulse width modulator controls the intensity of the display.

Scan-Limit Register

The scan limit register 0 Bh selects the number of digits displayed. When all 8 digits are displayed the update frequency is typically 800 Hz . If the number of digits displayed is reduced, the update frequency is reduced as well. The frequency can be calculated using $8 f O S C / N$, where N is the number of digits. Since the number of displayed digits influences the brightness, the resistor RSET should be adjusted accordingly. Table 9 shows the maximum allowed current, when fewer than 4 digits are
used. To avoid differences in brightness the scan limit register should not be used to blank portions of the display (leading zeros).

Register	Address					Hex
	D15-D12	D11	D10	D9	D8	Code
No-Op	X	0	0	0	0	0xX0
Digit 0	X	0	0	0	1	0xX1
Digit 1	X	0	0	1	0	$0 \times \times 2$
Digit 2	X	0	0	1	1	0xX3
Digit 3	X	0	1	0	0	0xX4
Digit 4	X	0	1	0	1	0xX5
Digit 5	X	0	1	1	0	0xX6
Digit 6	X	0	1	1	1	$0 \times \times 7$
Digit 7	X	1	0	0	0	0xX8
Decode Mode	X	1	0	0	1	0xX9
Intensity	X	1	0	1	0	0xXA
Scan Limit	X	1	0	1	1	OXXB
Shutdown	X	1	1	0	0	0xXC
Not used	X	1	1	0	1	0xXD
Reset and ext. Clock	X	1	1	1	0	0xXE
Display Test	X	1	1	1	1	0xXF

Table 2: Register address map

Mode	Address Code			Register Data					
	(Hex)	D7	D6	D5	D4	D3	D2	D1	D0
Shutdown Mode	0xXC	X	X	X	X	X	X	X	0
Normal Operation	0xXC	X	X	X	X	X	X	X	1

Table 3: Shutdown register format (address (hex) =0xXC)

Decode Mode	Register Data										
	D7	D6	D5	D4	D3	D2	D1	D0	Hex Code		
No decode for digits 7-0	0	0	0	0	0	0	0	0	0×00		
Code B decode for digit 0 No decode for digits 7-1	0	0	0	0	0	0	0	1	0×01		
Code B decode for digits 3-0 No decode for digits 7-4	0	0	0	0	1	1	1	1	$0 \times 0 F$		
Code B decode for digits 7-0	1	1	1	1	1	1	1	1	$0 x F F$		

Table 4: Decode-mode register examples (address (hex) $=0 \times \mathrm{X} 9$)

7-Segment	Register Data						On Segments = 1							
Character	D7*	D6-D4	D3	D2	D1	D0	DP*	A	B	C	D	E	F	G
0		X	0	0	0	0		1	1	1	1	1	1	0
1		X	0	0	0	1		0	1	1	0	0	0	0
2		X	0	0	1	0		1	1	0	1	1	0	1
3		X	0	0	1	1		1	1	1	1	0	0	1
4		X	0	1	0	0		0	1	1	0	0	1	1
5		X	0	1	0	1		1	0	1	1	0	1	1
6		X	0	1	1	0		1	0	1	1	1	1	1
7		X	0	1	1	1		1	1	1	0	0	0	0
8		X	1	0	0	0		1	1	1	1	1	1	1
9		X	1	0	0	1		1	1	1	1	0	1	1
-		X	1	0	1	0		0	0	0	0	0	0	1
E		X	1	0	1	1		1	0	0	1	1	1	1
H		X	1	1	0	0		0	1	1	0	1	1	1
L		X	1	1	0	1		0	0	0	1	1	1	0
P		X	1	1	1	0		1	1	0	0	1	1	1
blank		X	1	1	1	1		0	0	0	0	0	0	0

Table 5: Code B font
*The decimal point is set by bit D7 = 1

	Register Data								
	D7	D6	D5	D4	D3	D2	D1	D0	
Corresponding Segment Line	DP	A	B	C	D	E	F	G	

Table 6: No-decode mode data bits and corresponding segment lines

Figure 2: Standard 7-segment LED

Duty Cycle					D3	D2			Hex Code
1/32 (min on)	X	X	X	X	0	0	0	0	0xX0
3/32	X	X	X	X	0	0	0	1	0xX1
5/32	X	X	X	X	0	0	1	0	0xX2
7/32	X	X	X	X	0	0	1	1	0xX3
9/32	X	X	X	X	0	1	0	0	0xX4
11/32	X	X	X	X	0	1	0	1	0xX5
13/32	X	X	X	X	0	1	1	0	0xX6
15/32	X	X	X	X	0	1	1	1	0xX7
17/32	X	X	X	X	1	0	0	0	0xX8
19/32	X	X	X	X	1	0	0	1	0xX9
21/32	X	X	X	X	1	0	1	0	0xXA
23/32	X	X	X	X	1	0	1	1	$0 \times X B$
25/32	X	X	X	X	1	1	0	0	0xXC
27/32	X	X	X	X	1	1	0	1	0xXD
29/32	X	X	X	X	1	1	1	0	OxXE
31/32 (max on)	X	X	X	X	1	1	1	1	0xXF

Table 7: Intensity register format (address (hex) $=0 \times \mathrm{XXA}$)

Scan Limit	Register Data								Hex Code
	D7	D6	D5	D4	D3	D2	D1	D0	
Display digit 0 only	X	X	X	X	X	0	0	0	0xX0
Display digits 0 \& 1	X	X	X	X	X	0	0	1	0xX1
Display digits 012	X	X	X	X	X	0	1	0	0xX2
Display digits 0123	X	X	X	X	X	0	1	1	0xX3
Display digits 01234	X	X	X	X	X	1	0	0	0xX4
Display digits 012345	X	X	X	X	X	1	0	1	0xX5
$\begin{aligned} & \text { Display digits } 012345 \\ & 6 \end{aligned}$	X	X	X	X	X	1	1	0	0xX6
$\begin{array}{\|l\|l\|} \hline \text { Display digits } 012345 \\ 67 \end{array}$	X	X	X	X	X	1	1	1	0xX7

Table 8: Scan-limit register format (address (hex) = 0xXB)

Display Test Register

With the display test register OFh all LED can be tested. In the test mode all LEDs are switched on at maximum brightness (duty cycle 31/32). All programming of digit and control registers is maintained. The format of the register is given in table 10.

Number of Digits Displayed	Maximum Segment Current $(\mathbf{m A})$
1	10
2	20
3	30

Table 9: Maximum segment current for 1-, 2-, or 3-digit displays

Mode	Register Data							
	D7	D6	D5	D4	D3	D2	D1	D0
	X	X	X	X	X	X	X	0
Display Test Mode	X	X	X	X	X	X	X	1

Table 10: Display-test register format (address (hex) $=0 \times X F$)
Note: The AS1100 remains in display-test mode until the display-test register is reconfigured for normal operation.

No-Op Register (Cascading of As1100)

The no-operation register 00h is used when AS1100s are cascaded in order to support more than 8 digit displays. The cascading must be done in a way that all DOUT are connected to DIN of the following AS1100. The LOAD and CLK signals are connected to all devices. For a write operation for example to the fifth device the command must be followed by four no-operation commands. When the LOAD signal finally goes to high all shift registers are latched. The first four devices have got no-operation commands and only the fifth device sees the intended command and updates its register.

Reset and external Clock Register ${ }^{3}$

This register is addressed via the serial interface. It allows to switch the device to external clock mode (If DO=1 the CLK pin of the serial interface operates as system clock input.) and to apply an external reset (D1). This brings all registers (except reg. E) to default state. For standard operation the register contents should be "00h".

[^1]| Mode | Address code (hex) | Register Data | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| Normal Operation, internal clock | $0 x X E$ | X | X | X | X | X | X | 0 | 0 |
| Normal Operation, external clock | 0xXE | X | X | X | X | X | X | 0 | 1 |
| Reset state, internal clock | 0xXE | X | X | X | X | X | X | 1 | 0 |
| Reset state, external clock | 0xXE | X | X | X | X | X | X | 1 | 1 |

Table 11: Reset and external Clock register (address (hex) $=0 \times X E$)

Applications Information

Supply Bypassing and Wiring

In order to achieve optimal performance the AS1100 shall be placed very close to the LED display to minimize effects of electromagnetic interference and wiring inductance. Furthermore it is recommended to connect a $10 \mu \mathrm{~F}$ electrolytic and a $0.1 \mu \mathrm{~F}$ ceramic capacitor between VDD and GND to avoid power supply ripple. Also, both GNDs must be connected to ground.

Selecting Rset Resistor and Using External Drivers

The current through the segments is controlled via the external resistor Rset. Segment current is about 100 times the current in Iset. The right values for Iset are given in table 12. The maximum current the AS1100 can drive is 40 mA . If higher currents are needed, external drivers must be used. In that case it is no longer necessary that the AS1100 drives high currents. A recommended value for $\mathrm{R}_{\text {SEt }}$ is $47 \mathrm{k} \Omega$. In cases that the AS1100 only drives few digits table 9 specifies the maximum currents and RSET must be set accordingly. Refer to absolute maximum ratings to calculate acceptable limits for ambient temperature, segment current, and the LED forward-voltage drop.

IsEg (mA)	$\mathbf{7}$				
	$\mathbf{1 . 5}$	$\mathbf{2 . 0}$	$\mathbf{2 . 5}$	3.0	3.5
40	12.2	11.8	11.0	10.6	9.69
30	17.8	17.1	15.8	15.0	14.0
20	29.8	28.0	25.9	24.5	22.6
10	66.7	63.7	59.3	55.4	51.2

Table 12: RSET vs. segment current and LED forward voltage

8x8 LED Dot Matrix Driver

The example in Figure 3 uses the AS1100 to drive an 8×8 LED dot matrix. The LED columns have common cathode and are connected to the DIGO-7 outputs. The rows are connected to the segment drivers. Each of the 64 LEDs can be addressed separately. The columns are selected via the digits as shown in Table 2. The decode mode register ($0 \times \mathrm{XX} 9$) has to be programmed to '00000000' as stated in Table 4. The single LEDs in a column can be addressed as stated in Table 6, where D0 corresponds to segment G and $d /$ to segment DP. For a multiple digit dot matrix several AS1100 have to be cascaded.

Figure 3: Application example as LED dot matrix driver

Cascading Drivers
The AS1100 can be cascaded as well. The DOUT pin must be connected to the DIN pin of the following AS1100.

Package	Thermal Resistance (θ_{JA})
24 Narrow DIP	$+75^{\circ} \mathrm{C} / \mathrm{W}$
24 Wide SO	$+85^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Junction Temperature $\left(\mathrm{TJ}_{\mathrm{J}}\right)=+150^{\circ} \mathrm{C}$	
Maximum Ambient Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)=+85^{\circ} \mathrm{C}$	

Table 13: Package thermal resistance data

Computing Power Dissipation

The upper limit for power dissipation (PD) for the AS1100 is determined from the following equation:

$$
P D=(V D D \times 0.5 \mathrm{~mA})+\left(V D D-V_{\text {LED }}\right)\left(D U T Y \times I_{\text {SEG }} \times N\right)
$$

where:

> VDD = supply voltage

DUTY = duty cycle set by intensity register
$N=$ number of segments driven (worst case is 8)
$V_{\text {LED }}=$ LED forward voltage
$I_{\text {SEG }}=$ segment current set by RSET
Dissipation Example:
$I_{\text {SEG }}=40 \mathrm{~mA}, \mathrm{~N}=8$, DUTY $=31 / 32, \mathrm{~V}_{\text {LED }}=1.8 \mathrm{~V}$ at $40 \mathrm{~mA}, \mathrm{VDD}=5.25 \mathrm{~V}$
$\mathrm{PD}=5.25 \mathrm{~V}(0.5 \mathrm{~mA})+(5.25 \mathrm{~V}-1.8 \mathrm{~V})(31 / 32 \times 40 \mathrm{~mA} \times 8)=1.07 \mathrm{~W}$
Thus, for a PDIP package $\theta_{\mathrm{JA}}=+75^{\circ} \mathrm{C} / \mathrm{W}$ (from Table 13), the maximum allowed ambient temperature T_{A} is given by:
$\mathrm{T}_{J, M A X}=\mathrm{T}_{\mathrm{A}}+\mathrm{PD} \times \theta_{\mathrm{JA}}=150^{\circ} \mathrm{C}=\mathrm{T}_{\mathrm{A}}+1.07 \mathrm{~W} \times 75^{\circ} \mathrm{C} / \mathrm{W}$.
where $T_{A}=+69.7^{\circ} \mathrm{C}$.

The T_{A} limit for SO Packages in the dissipation example above is $+59.0^{\circ} \mathrm{C}$.

Package Information

TOP VIEW

FRCNT YEW

SICE VIEW

	Inches			Millimeters		
Dim	Min		Max	Min		Max
A	$\cdots-$	0.180	$\cdots-$	4.572		
A1	0.015	$\cdots--$	0.380	--		
A2	0.125	.0175	3.180	4.450		
A3	0.055	0.080	1.400	2.030		
B	0.015	0.022	0.381	0.560		
B1	0.045	0.065	1.140	1.650		
C	0.008	0.014	0.200	0.355		
D	1.140	1.265	28.96	32.13		
D1	0.005	0.080	0.130	2.030		
E	0.300	0.325	7.620	8.260		
E1	0.240	0.310	6.100	7.870		
e	0.100	BSC	2.54	BSC.		
eA	0.300	BSC	7.62			
BSC.						
eB	0.400	BSC	10.2			

Figure 5: PDIP-24 package dimensions

Figure 6: Segment driver capability

Ordering Information

Part	Temp Range	Pin Package	Delivery Form
AS1100PL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Narrow Plastic DIP	Tubes
AS1100WL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Wide SO	Tubes
AS1100PE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Narrow Plastic DIP	Tubes
AS1100WE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Wide SO	Tubes
AS1100WL-T	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Wide SO	T\&R
AS1100WE-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Wide SO	T\&R

For Pb-free package use suffix '-

Contact

austriamicrosystems AG
A 8141 Schloss Premstätten, Austria
T. +43 (0) 31365000
F. +43 (0) 313652501
info@austriamicrosystems.com

Copyright

Copyright © 2004 austriamicrosystems. Trademarks registered ©. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. To the best of its knowledge, austriamicrosystems asserts that the information contained in this publication is accurate and correct

Austriamicrosystems reserves the right to change the circuitry and specifications without notice at any time.

[^0]: Software Reset and external clock are not supported by MAX7219

[^1]: ${ }^{3}$ This register is not used by MAX7219, since it does not support software reset and external clocks

