SKUT 230

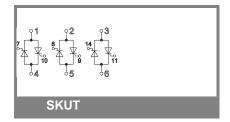
SEMIPONT® 7

Three Phase Antiparallel Thyristor Module

SKUT 230

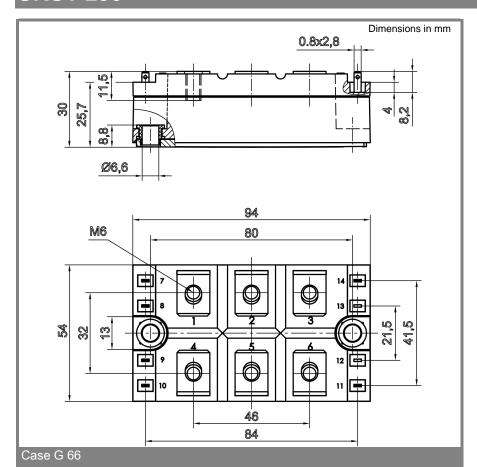
Preliminary Data

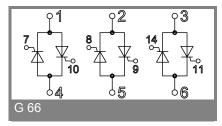
Features


- Robust plastic case with screw terminals
- Heat transfer through aluminium oxide ceramic isolated metal base plate
- Blocking voltage up to 1800V
- High surge current
- lead free solder
- UL -recognition applied for file no. E 63 532

Typical Applications

- AC motor soft starter
- Temperature control (e.g. for ovens, chemical processes)
- · Professional light dimming


V _{RSM}	V_{RRM}, V_{DRM}	I _{RMS} = 230 A (full conduction)		
V	V	(T _c = 80 °C)		
900	800	SKUT 230/08		
1300	1200	SKUT 230/12		
1700	1600	SKUT 230/16		
1900	1800	SKUT 230/18 ¹⁾		


Symbol	Conditions	Values	Units
I _{RMS}	per arm ; sin. 180° ; T _c = 80 °C	230	Α
	per arm ; sin. 180° ; T _c = 85 °C	215	Α
	per arm ; sin. 180°; T _c = 100°C	163	Α
I _{TSM}	T _{vi} = 25 °C ; 10 ms	2200	Α
	T _{vi} = 130 °C ; 10 ms	1950	Α
i²t	T _{vi} = 25 °C ; 8,3 10 ms	24200	A²s
	T _{vj} = 130 °C ; 8,3 10 ms	19000	A²s
V _T	T _{vi} = 25 °C, I _T = 300 A	max. 1,85	V
$V_{T(TO)}$	T _{vi} = 130 °C	0,9	V
r _T	T _{vi} = 130 °C	3,5	mΩ
$I_{DD};I_{RD}$	$T_{vi}^{y} = 25 ^{\circ}\text{C}, V_{RD} = V_{RRM}$	max. 1	mA
	T _{vj} = 130 °C, V _{RD} =V _{RRM}	max. 20	mA
t _{gd}	T _{vj} = 25 °C, I _G = 1 A; di _G /dt= 1 A/µs	1	μs
t _{gr}	$V_{D} = 0.67 * V_{DRM}$	2	μs
(dv/dt) _{cr}	T _{vi} = 130 °C	1000	V/µs
(di/dt) _{cr}	T _{vi} = 130 °C; f= 50 Hz	150	A/µs
t _q	T_{vi}^{5} = 130 °C; typ.	100	μs
I _H	T _{vj} = 25 °C; typ. / max.	150 / 300	mA
IL	T_{vj} = 25 °C; R_G = 33 Ω ; typ. / max.	300 / 600	mA
V _{GT}	T _{vj} = 25 °C; d.c.	min. 3	V
I_{GT}	$T_{vj}^{3} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 150	mA
V_{GD}	T _{vj} = 130 °C; d.c.	max. 0,25	V
I_{GD}	T _{vj} = 130 °C; d.c.	max. 6	mA
R _{th(j-c)}	per thyristor	0,27	K/W
3 0 3,	total	0,045	K/W
$R_{th(c-s)}$	total	0,03	K/W
T _{vj}		- 40 + 130	°C
T_{stg}		- 40 + 130	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3600 / 3000	V~
M_s	to heatsink	5 ±15%	Nm
M_t	to terminal	5 ±15%	Nm
а		5 * 9,81	m/s²
m	approx.	250	g
Case		G 66	

¹⁾ available on request

SKUT 230

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.