SKUT 115

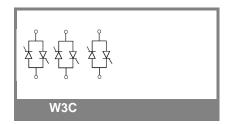
SEMIPONTTM 5

Three phase antiparallel Thyristor Module

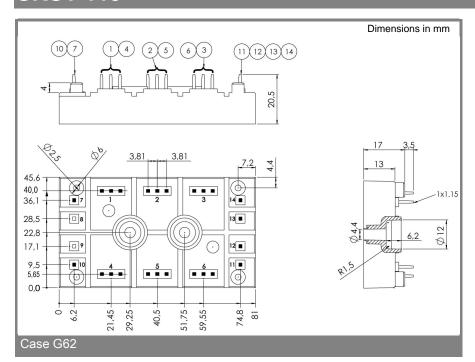
SKUT 115

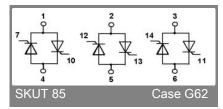
Target Data

Features


- Compact design
- · Two screws mounting
- Heat transfer and isolation through direct copper board (Low R_{th})
- Low resistance in Steady-State and high reliability
- High surge currents
- Glass passived thyristors chips
- Up to 1600V reverse voltage
- UL recognized, file no. E 63 532

Typical Applications


- Soft starter
- Light control (e.g. studios, theaters)
- Temperature control (e.g. oven, chemical processes)


V _{RSM}	V_{RRM}, V_{DRM}	I _{RMS} = 105 A (full conduction)	
V	V	(T _s = 85 °C)	
1300	1200	SKUT 115/12	
1700	1600	SKUT 115/16	

Symbol	Conditions	Values	Units
I _{RMS}	W3C ; sin. 180° ; T _s = 85°C	105	Α
	; sin. 180°;		Α
I _{TSM}	T _{vi} = 25 °C ; 10 ms		Α
	T _{vi} = 125 °C ; 10 ms	1250	Α
i²t	T _{vj} = 25 °C ; 10 ms		A²s
	T_{vj} = 125 °C ; 8,310 ms	7800	A²s
V _T	T _{vi} = 25 °C, I _T = 150 A	max. 1,6	V
$V_{T(TO)}$	T _{vi} = 125 °C	max. 0,9	V
r _T	T _{vi} = 125 °C	max. 5	mΩ
$I_{DD};I_{RD}$	$T_{vj} = 25 ^{\circ}\text{C}, V_{RD} = V_{RRM}$	max. 1	mA
	$T_{vj} = 125 ^{\circ}\text{C}, V_{RD} = V_{RRM}$	max. 20	mA
t _{gd}	$T_{vj} = 25 ^{\circ}\text{C}, I_{G} = 1 \text{A}; di_{G}/dt = 1 \text{A/}\mu\text{s}$	1	μs
t_{gr}	$V_{\rm D} = 0.67 * V_{\rm DRM}$	2	μs
(dv/dt) _{cr}	T _{vi} = 125 °C	500	V/µs
(di/dt) _{cr}	T _{vi} = 125 °C; f= 5060 Hz	100	A/µs
t _q	T _{vj} = 125 °C; typ.	150	μs
I _H	$T_{vj} = 25 ^{\circ}\text{C}$; typ. / max.	200	mA
I_L	T_{vj} = 25 °C; R_{G} = 33 Ω; typ. / max.	600	mA
V _{GT}	T _{vj} = 25 °C; d.c.	min. 3	V
I _{GT}	T_{vj} = 25 °C; d.c.	min. 150	mA
V_{GD}	T _{vj} = 125 °C; d.c.	max. 0,25	V
I_{GD}	$T_{vj} = 125 ^{\circ}\text{C}; \text{d.c.}$	max. 6	mA
$R_{th(j-s)}$	sin 180°C per Thyristor	0,63	K/W
			K/W
T _{vj}		-40+125	°C
T _{stg}		-40+125	°C
T _{sold}	Terminals, 10s max	260	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3600 / 3000	V~
M _s	Mounting torque to Heatsink, SI units	2,5	Nm
M _t		·	Nm
a			m/s²
m		75	g
Case	SEMIPONT 5	G62	

SKUT 115

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.