

STC OT391 Sensitive Gate Silicon Controlled Rectifier

Reverse Blocking Thyristor

PNPN device designed for line-powered general purpose applications such as relay and lamp drivers, small motor controls, gate drivers for larger thyristors, and sensing and detection circuits. Supplied in a cost effective plastic TO-92 package.

- Sensitive Gate Allows Direct Triggering by Microcontrollers and Other Logic Circuits
- On–State Current Rating of 0.8 Amperes RMS at 80°C
- Surge Current Capability 10 Amperes
- Immunity to dV/dt 20 V/µsec Minimum at 110°C
- Glass-Passivated Surface for Reliability and Uniformity
- Blocking Voltage to 600 Volts

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Repetitive Off–State Voltage (Note 1.) $(T_J = -40 \text{ to } 110^{\circ}\text{C}, \text{ Sine Wave, } 50 \text{ to}$ 60 Hz; Gate Open)	V _{DRM,} V _{RRM}	600	Volts
On-State RMS Current ($T_C = 80^{\circ}C$) 180° Conduction Angles	I _{T(RMS)}	0.8	Amp
Peak Non-Repetitive Surge Current (1/2 Cycle, Sine Wave, 60 Hz, T _J = 25°C)	I _{TSM}	10	Amps
Circuit Fusing Consideration (t = 10 ms)	l ² t	0.415	A ² s
Forward Peak Gate Power $(T_A = 25^{\circ}C, Pulse Width \le 1.0 \mu s)$	P _{GM}	0.1	Watt
Forward Average Gate Power $(T_A = 25^{\circ}C, t = 20 \text{ ms})$	P _{G(AV)}	0.10	Watt
Forward Peak Gate Current $(T_A = 25^{\circ}C, Pulse Width \le 1.0 \mu s)$	I _{GM}	1.0	Amp
Reverse Peak Gate Voltage $(T_A = 25^{\circ}C, Pulse Width \le 1.0 \mu s)$	V _{GRM}	5.0	Volts
Operating Junction Temperature Range @ Rate V _{RRM} and V _{DRM}	TJ	-40 to 110	°C
Storage Temperature Range	T _{stg}	-40 to 150	°C

(1) V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant source such that the voltage ratings of the devices are exceeded. SCR 0.8 AMPERES RMS 600 VOLTS

TO-92 (TO-226) CASE 029 STYLE 10

PIN ASSIGNMENT		
1	Cathode	
2	Gate	
3	Anode	

OT391

THERMAL CHARACTERISTICS

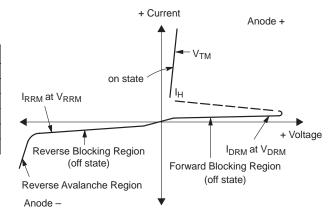
Characteristic	Symbol	Max	Unit
Thermal Resistance – Junction to Case – Junction to Ambient	R _{θJC} R _{θJA}	75 200	°C/W
Lead Solder Temperature (<1/16" from case, 10 secs max)	TL	260	°C

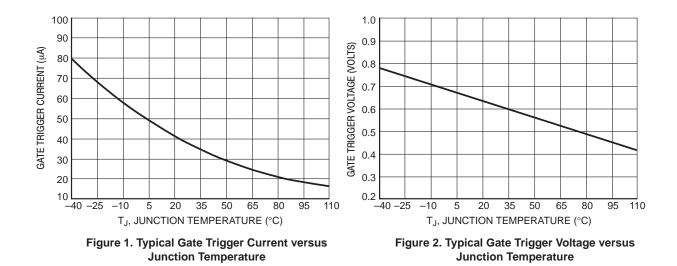
ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			-	•	•	•
Peak Repetitive Forward or Reverse Blocking Current (Note 1.) $(V_D = Rated V_{DRM} and V_{RRM}; R_{GK} = 1.0 k\Omega)$	T _C = 25°C T _C = 110°C	I _{DRM} , I _{RRM}			10 0.1	μA mA
ON CHARACTERISTICS						
Peak Forward On–State Voltage ^(*) (I_{TM} = 1.0 Amp Peak @ T_A = 25°C)		V _{TM}	-	-	1.3	Volts
Gate Trigger Current (Continuous dc) (Note 2.) $(V_{AK} = 12 \text{ V}, \text{ R}_{L} = 100 \text{ Ohms})$	$T_C = 25^{\circ}C$	I _{GT}	-	6	8	μΑ
Holding Current (Note 2.) $(V_{AK} = 12 \text{ V}, I_{GT} = 0.5 \text{ mA})$	$T_{\rm C} = 25^{\circ}{\rm C}$ $T_{\rm C} = -40^{\circ}{\rm C}$	Ι _Η	-	0.5 -	5.0 10	mA
Latch Current (V_{AK} = 12 V, I _{GT} = 0.5 mA, R _{GK} = 1.0 k)	$T_{C} = 25^{\circ}C$ $T_{C} = -40^{\circ}C$	ΙL		0.6 -	10 15	mA
Gate Trigger Voltage (Continuous dc) (Note 2.) (V_{AK} = 12 V, R _L = 100 Ohms, I _{GT} = 10 mA)	$T_C = 25^{\circ}C$ $T_C = -40^{\circ}C$	V _{GT}		0.5 —	0.52 1.2	Volts

DYNAMIC CHARACTERISTICS

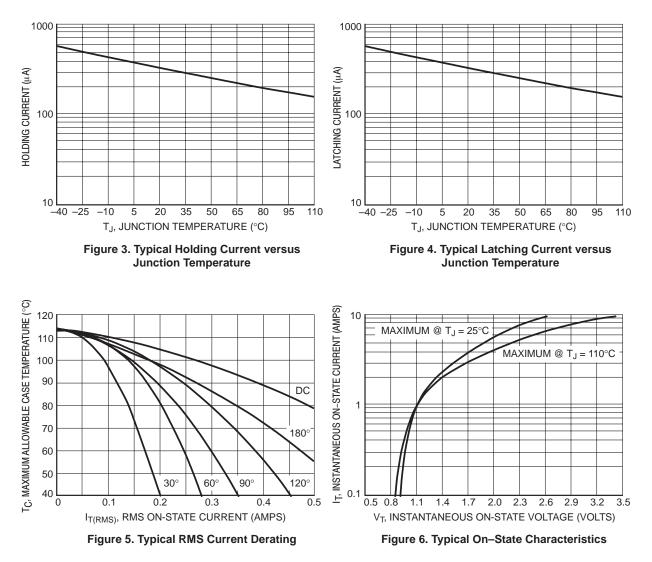
Critical Rate of Rise of Off–State Voltage (V_D = Rated V_{DRM} , Exponential Waveform, R_{GK} = 1000 Ohms, T_J = 110°C)	dV/dt	20	35	-	V/µs
Critical Rate of Rise of On–State Current (I _{PK} = 20 A; Pw = 10 μsec; diG/dt = 1.0 A/μsec, Igt = 20 mA)	di/dt	-	-	50	A/μs


*Indicates Pulse Test: Pulse Width \leq 1.0 ms, Duty Cycle \leq 1%.


1. R_{GK} = 1000 Ohms included in measurement. 2. Does not include R_{GK} in measurement.

OT391

Voltage Current Characteristic of SCR


-	
Symbol	Parameter
V _{DRM}	Peak Repetitive Off State Forward Voltage
I _{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Off State Reverse Voltage
I _{RRM}	Peak Reverse Blocking Current
V _{TM}	Peak on State Voltage
Ι _Η	Holding Current
	1

Downloaded from Elcodis.com electronic components distributor

OT391

