

MIC2559

PCMCIA Dual Card Socket V_{PP} Switching Matrix

Not Recommended for New Designs

General Description

The MIC2559 Dual V_{PP} Matrix switches the four voltages required by PCMCIA (Personal Computer Memory Card International Association) card V_{PP1} and V_{PP2} Pins. The MIC2559 provides selectable 0V, 3.3V, 5.0V, or 12.0V ($\pm 5\%$) from the system power supply to V_{PP1} and V_{PP2} . Output voltage is selected by two digital inputs per V_{PP} pin. Output current ranges up to 120mA. Four output states, V_{PP} , V_{CC} , high impedance, and active logic low are available, and V_{PP1} is independent of V_{PP2} . An auxiliary control input determines whether the high impedance (open) state or low logic state is asserted.

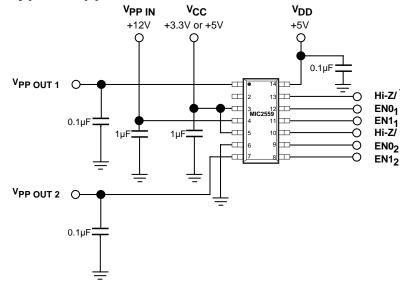
In standby mode or full operation, the device draws very little quiescent current, typically less than 1μ A.

The MIC2559 is available in a 14-pin SOIC.

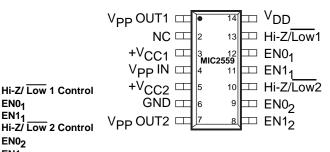
Applications

- PCMCIA V_{PP} Pin Voltage Switch
- Power Supply Management

Features


- Complete PCMCIA V_{PP} Switch Matrix in a Single IC
- Dual Matrix allows independent V_{PP1} and V_{PP2}
- Digital Selection of 0V, V_{CC}, V_{PP}, or High Impedance Output
- No V_{PPOUT} Overshoot or Switching Transients
- · Break-Before-Make Switching
- Ultra Low Power Consumption
- 120mA V_{PP} (12V) Output Current
- Optional Active Source Clamp for Zero Volt Condition
- 3.3V or 5V Supply Operation
- 14-Pin SOIC Package

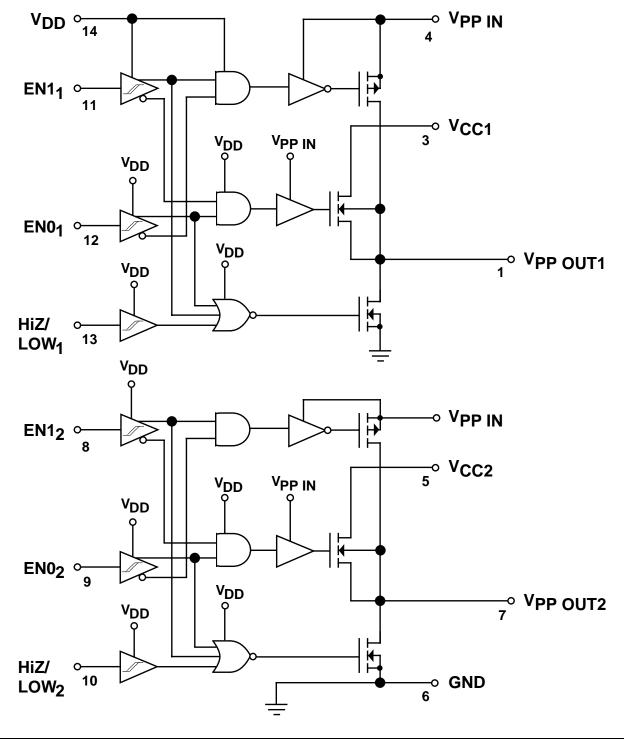
Ordering Information


Part Number	Temperature Range	Package		
MIC2559BM	–40°C to +85°C	14-pin SOIC		
MIC2559BM T&R	-40°C to +85°C	14-SO Tape & Reel*		

^{* 2,500} Parts per reel.

Typical Application

Pin Configuration



EN1	EN0	Hi-Z/Low	V _{PP OUT}
0	0	0	0V, (Sink current)
0	0	1	Hi-Z (No Connect)
0	1	х	V _{CC} (3.3V or 5.0V)
1	0	x	V _{PP}
1	1	Х	Hi-Z (No Connect)

Absolute Maximum Ratings (Notes 1 and 2)

Power Dissipation, T _{AMBIENT} ≤ 25°C	800 mW	Supply Voltage, V _{PP IN}	15V
Derating Factors (To Ambient)	4 mW/°C	V _{CC}	7.5V
Storage Temperature	-65°C to +150°C	V_{DD}	7.5V
Operating Temperature (Die)	125°C	Logic Input Voltages	–5V toV _{DD}
Operating Temperature (Ambient)	-40°C to +85°C	Output Current (each Output)	
Lead Temperature (5 sec)	260°C	V _{PP OUT} = 12V	600mA
. , ,		V _{PP OUT} = V _{CC}	250mA

Logic Block Diagram

Electrical Characteristics: (Over operating temperature range with $V_{DD} = V_{CC} = 5V$, $V_{PP\ IN} = 12\ V$ unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
INPUT				•		•
V _{IH}	Logic 1 Input Voltage		2.2			V
V _{IL}	Logic 0 Input Voltage				0.8	V
V _{IN} (Max)	Input Voltage Range		– 5		V _{DD}	V
I _{IN}	Input Current	0 V < V _{IN} < V _{DD}			±1	μΑ
EACH OUT	PUT					
V_{OL}	Clamp Low Output Voltage	EN0 = EN1 = HiZ = 0, I _{SINK} = 1.6mA			0.4	V
I _{OUT} , Hi-Z	High Impedance Output Leakage Current	EN0 = EN1 = 0, HiZ = 1. 0 ≤ V _{PP OUT} ≤ 12V		1	10	μА
R _{OC}	Clamp Low Output Resistance	Resistance to Ground. I _{SINK} = 2mA EN0 = EN1 = 0, HiZ = 0.		130	250	Ω
R _O	Switch Resistance, VPP OUT = VCC	$I_{PP\ OUT}$ = -100 mA (Sourcing) T_A = -40°C to +60°C		0.8	1.5	Ω
R _O	Switch Resistance, VPP OUT = VPP IN	I _{PP OUT} = -100 mA (Sourcing)		0.5	1	Ω
SWITCHING	G TIME (See Figure 1)					
t ₁	Delay + Rise Time	V _{PP OUT} = 0V to 5V (Notes 3, 5)		15	50	μs
t ₂	Delay + Rise Time	V _{PP OUT} = 5V to 12V (Notes 3, 5)		12	50	μs
t ₃	Delay + Fall Time	V _{PP OUT} = 12V to 5V (Notes 3, 5)		25	75	μs
t ₄	Delay + Fall Time	V _{PP OUT} = 5V to 0V (Notes 3, 5)		45	100	μs
t ₅	Output Turn-On Delay	V _{PP OUT} = Hi-Z to 5V (Notes 4, 5)		10	50	μs
t ₆	Output Turn-Off Delay	V _{PP OUT} = 5V to Hi-Z (Notes 4, 5)		75	200	ns
POWER SU	JPPLY					
I _{DD}	V _{DD} Supply Current			_	1	μΑ
I _{CC}	V _{CC} Supply Current	I _{PP OUT} = 0		-	1	μА
I _{PP} Supply Current	I _{PP} Supply Current	$V_{PP OUT1} = V_{PPOUT2} = 0 \text{ V or } V_{PP}$. $I_{PPOUT} = 0$.		_	10	μΑ
		V _{PP OUT1} = V _{PPOUT2} = V _{CC}		20	80	μΑ

Electrical Characteristics (continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
POWER SUPPLY, continued							
V _{CC}	Operating Input Voltage				6	V	
V _{DD}	Operating Input Voltage		2.8		6	V	
V _{PP IN}	Operating Input Voltage		8.0		14.5	V	

NOTE 1: Functional operation above the absolute maximum stress ratings is not implied.

NOTE 2: Static-sensitive device. Store only in conductive containers. Handling personnel and equipment should be grounded to prevent damage from static discharge.

NOTE 3:

With R_L = $2.9 k\Omega$ and C_{OUT} = $0.1 \mu F$ on V_{PP OUT}. R_L = $2.9 k\Omega$. R_L is connected to V_{CC} during t₅, and is connected to ground during t₆. Rise and fall times are measured to 90% of the difference of initial and final values. NOTE 4: NOTE 5:

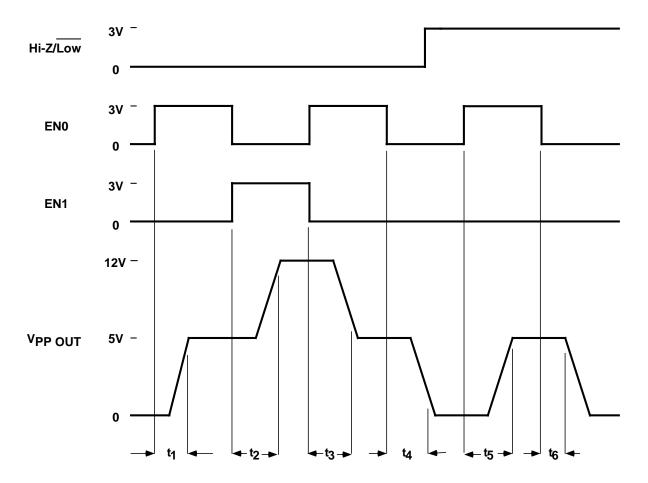


Figure 1. Timing Diagram.

Applications Information

PCMCIA V_{PP1} and V_{PP2} control is easily accomplished using the MIC2559 voltage selector/switch IC. Two control bits per $V_{PP\;OUT}$ pin determine output voltage and standby/operate mode condition. Output voltages of 0V (defined as less than 0.4V), V_{CC} (3.3V or 5V), V_{PP} , or a high impedance state, are available. When either the high impedance or low voltage conditions are selected, the device switches into "sleep" mode and draws only nanoamperes of leakage current.

The MIC2559 is a dual low-resistance power MOSFET switching matrix that operates from the computer system main power supply. Device power is obtained from $V_{DD},$ which may be either 3.3V or 5V, and FET drive is obtained from $V_{PP\ IN}$ (usually +12V). Internal break-before-make switches determine the output voltage and device mode. V_{PP1} and V_{PP2} are completely indepenent from each other.

Supply Bypassing

For best results, bypass V_{CC} and $V_{PP\ IN}$ inputs with 1 μ F capacitors. Both $V_{PP\ OUT}$ pins should have a 0.01 μ F to 0.1 μ F capacitor for noise reduction and electrostatic discharge (ESD) damage prevention. Larger values of output capacitor will create large current spikes during transitions, requiring larger bypass capacitors on the V_{CC} and $V_{PP\ IN}$ pins.

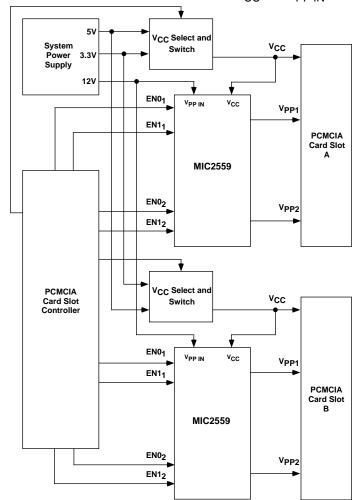


Figure 2. MIC2559 Typical two slot PCMCIA application with dual $V_{\rm cc}$ (5.0V or 3.3V).

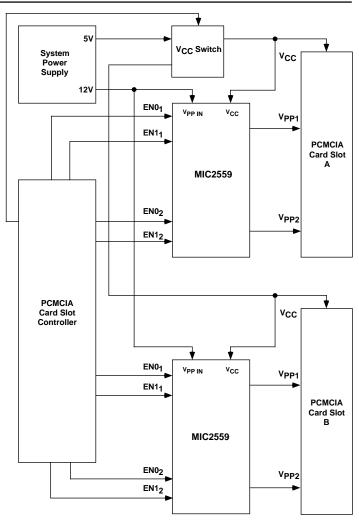


Figure 3. MIC2559 Typical two slot PCMCIA application with single 5.0V $V_{\rm cc}$.

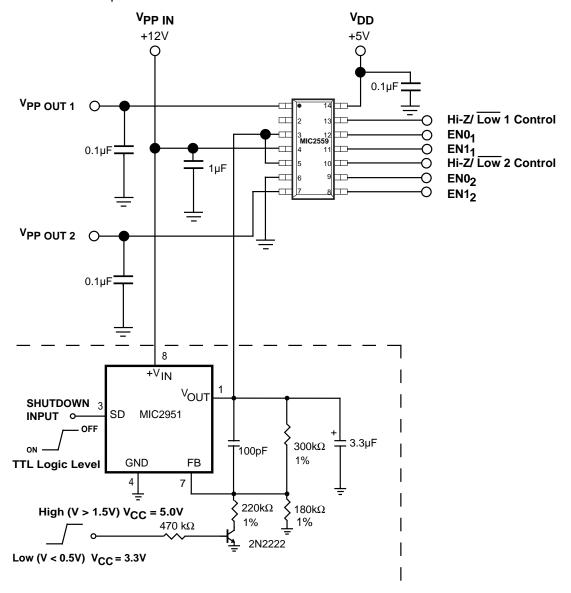
PCMCIA Implementation

The Personal Computer Memory Card International Association (PCMCIA) specification, version 2.0 (September, 1991), requires two V_{PP} supply pins per PCMCIA slot. V_{PP} is primarily used for programming Flash (EEPROM) memory cards. The two V_{PP} supply pins may be programmed to different voltages. Fully implementing PCMCIA specifications requires a MIC2559 and a controller. Figure 2 shows this full configuration, supporting both 5.0V and 3.3V V_{CC} operation. Figure 3 is a simplified design with fixed V_{CC}=5V.

When a memory card is initially inserted, it should receive V_{CC} — usually 5.0V \pm 5%. The card sends a handshaking data stream to the controller, which then determines whether or not this card requires V_{PP} and if the card is designed for 5.0V or 3.3V V_{CC} . If the card uses 3.3V V_{CC} , the controller commands this change, which is reflected on the V_{CC} pins of both the PCMCIA slot and the MIC2559.

During Flash memory programming, the PCMCIA controller outputs a (1,0) to one or both halves of the MIC2559, which connects $V_{PP\,IN}$ to $V_{PP\,OUT1}$ and/or $V_{PP\,OUT2}$. The low ON resistance of the MIC2559 switch requires only a small bypass capacitor on the $V_{PP\,OUT}$ pins, with the main filtering

action performed by a large filter capacitor on $V_{PP\ IN}$. The $V_{PP\ OUT}$ transition from V_{CC} to 12.0V typically takes 25 μ S. After programming is completed, the controller outputs a (0,1) to the MIC2559, which then reduces $V_{PP\ OUT}$ to the V_{CC} level. Break-before-make switching action reduces switching transients and lowers maximum current spikes through the switch from the output capacitor.


If no card is inserted, or the system is in sleep mode, the controller outputs either a (0,0) or a (1,1) to the MIC2559. Either input places the switch into shutdown mode, where current consumption drops even further.

The HiZ/Low input controls the optional logic low output clamp. With HiZ/Low in the high state and EN0 = EN1 = 0, $V_{PP\ OUT}$ enters a high impedance (open) state. With HiZ/Low in the low state and EN0 = EN1 = 0, $V_{PP\ OUT}$ is clamped to ground, providing a logic low signal. The clamp does not require any DC bias current for operation.

MOSFET drive and bias voltage is derived from $V_{PP\ IN}$. Internal device control logic is powered from V_{DD} , which should be connected to the same supply voltage as the PCMCIA controller (normally either 3.3V or 5V).

Output Current

MIC2559 output switches are capable of far more current than usually needed in PCMCIA applications. PCMCIA V_{PP} output current is limited primarily by switch resistance voltage drop (I x R) and the requirement that $V_{PP\,OUT}$ cannot drop more than 5% below nominal. $V_{PP\,OUT}$ will survive output short circuits to ground if $V_{PP\,IN}$ or V_{CC} are current limited by the regulator that supplies these voltages.

VCC Switching and Control Block

Figure 3. Full PCMCIA Implementation of V_{PP} and V_{CC} switching using MIC2559 and MIC2951 voltage regulator.