EIECIRONICS EIECIRONICS

BC 143

GENERAL DESCRIPTION :

The BC143 is a PNP silicon planar epitaxial transistor. It features low saturation voltage, low collector cutoff current and high breakdown voltage. It is intended for use in driver stage of high power audio amplifiers. It can be supplied together with BC144 as a matched pair.

MECHANICAL OUTLINE

ABSOLUTE MAXIMUM RATINGS :

Continuous Power Dissipation @ $T_A=25^{\circ}C$, P max Continuous Power Dissipation @ $T_A=45^{\circ}C$, P max Continuous Power Dissipation @ $T_C=25^{\circ}C$, P max Continuous Power Dissipation @ $T_C=75^{\circ}C$, P max aximum Collector Junction Temperature, Tj orage Temperature Range, Tstg Soldering Temperature (10 sec. time limit) Continuous Collector Current, I_C max Collector-Base Voltage, V_{CBO} Collector-Emitter Voltage, V_{CEO} Emitter-Base Voltage, V_{ERO}

0.8W 0.708W 4W 2.86W 200°C -55°C to +200°C 260°C -1A -60V -60V -5V

ELECTRICAL CHARACTERISTICS @ $^{T}A=25^{\circ}C$ (unless otherwise stated) :

DADAMETER	SYMBOL MIN TYP MAX UNIT TEST CONDITIONS					
PARAMETER Collector-Base Breakdown Voltage Collector-Emitter Breakdown Voltage Emitter-Base Breakdown Voltage Collector Cutoff Current Collector Cutoff Current Collector-Emitter Saturation Voltage	· BV _{CBO}	-60 -60 -5 -0.1 -0.002	-50 -50	V V V nA uA	$I_{C}=-10uA$ $I_{C}=-10mA$ $I_{E}=-10uA$ $V_{CB}=-30V$ $V_{CB}=-30V$ $T_{A}=75^{\circ}C$ $I_{C}=-500mA$	$I_{E}=0$ $I_{B}=0$ $I_{C}=0$ $I_{E}=0$ $I_{E}=0$ $I_{E}=0$
Collector-Emitter Saturation Voltage Collector-Emitter Saturation Voltage Collector-Emitter Saturation	VCE (sat) VCE (sat) VCE (sat)	-0.25 -1.2 -0.7	-0.5	v v v		$I_{B}=-50mA$ $I_{B}=-50mA$ $I_{B}=-100mA$
Voltage Base-Emitter On Voltage ase-Emitter On Voltage se-Emitter On Voltage Base-Emitter On Voltage	VBE (on) VBE (on) VBE (on) VBE (on)	-0.7 -0.75 -0.85 -0.93		v v v	$V_{CE} = -10V$ $V_{CE} = -10V$ $V_{CE} = -1V$ $V_{CE} = -1V$	I _C =-10mA I _C =-100mA I _C =-300mA I _C =-500mA

---- CONTINUE ----

ELECTRICAL CHARACTERISTICS @ ${}^{T}A=25^{\circ}C$ (unless otherwise stated) :

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	TEST CONDITIONS	
D.C. Current Gain	$h_{ m FE}$		88			$v_{\text{CE}}^{=-10\text{V}}$ $v_{\text{CE}}^{=-10\text{V}}$	$I_{C} = -10 \text{mA}$
D.C. Current Gain	$h_{ extbf{FE}}$		85			$V_{CE}^{CE}=-10V$	$I_{C}^{=-10mA}$
D.C. Current Gain	$h_{ extbf{FE}}^{ extbf{FE}}$	20	40			$V_{CE}=-1V$	I _C =-300m/
D.C. Current Gain	$h_{\mathbf{FE}}^{12}$	15	30			$V_{CE}=-1V$	I_C=-500mA
High Frequency Current Gain	h _{fe}		1.5			V _{CE} =-10V f=100MHz	$I_C = -50 \text{mA}$
Collector-Base Capacitance	Cob		13		рF	v _{CB} =-10v	$I_{E}=0$ $I_{C}=-500$ m/
BC143-BC144 match pair	h _{FE} ratio	0.8		1.25		V _{CE} =-1V	$I_{C} = -500 \text{m}$