## MPPS™ Miniature Package Power Solutions 12V PNP LOW SATURATION TRANSISTOR AND 40V, 1A SCHOTTKY DIODE COMBINATION DUAL

#### SUMMARY

PNP Transistor — V<sub>CEO</sub> =-12V; R<sub>SAT</sub> = 65m $\Omega$ ; I<sub>C</sub> = -4A

Schottky Diode —  $V_R = 40V$ ;  $V_F = 500mV$  (@1A);  $I_C=1A$ 

### DESCRIPTION

Packaged in the new innovative 3mm x 2mm MLP this combination dual comprises an ultra low saturation PNP transistor and a 1A Schottky barrier diode. This excellent combination provides users with highly efficient performance in applications including DC-DC and charging circuits.

Users will also gain several other key benefits:

Performance capability equivalent to much larger packages

- Improved circuit efficiency & power levels
- PCB area and device placement savings
- Lower package height (0.9mm nom)

Reduced component count

#### FEATURES

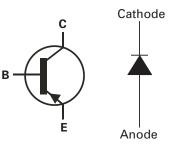
- Extremely Low Saturation Voltage (-140mV @1A)
- H<sub>FF</sub> characterised up to -10A
- I<sub>C</sub> = -4A Continuous Collector Current
- Extremely Low V<sub>F</sub>, fast switching Schottky
- 3mm x 2mm MLP

#### **APPLICATIONS**

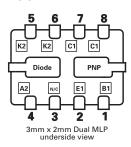
- DC DC Converters
- Mobile Phones
- Charging Circuits
- Motor control

#### **ORDERING INFORMATION**

| DEVICE         | REEL | TAPE<br>WIDTH | QUANTITY<br>PER REEL |
|----------------|------|---------------|----------------------|
| ZX3CD1S1M832TA | 7′′  | 8mm           | 3000                 |
| ZX3CD1S1M832TC | 13′′ | 8mm           | 10000                |


#### **DEVICE MARKING**

1S1


**ISSUE 1 - JUNE 2002** 



3mm x 2mm Dual Die MLP



PINOUT





## ABSOLUTE MAXIMUM RATINGS.

| PARAMETER                                                     | SYMBOL           | VALUE        | UNIT       |
|---------------------------------------------------------------|------------------|--------------|------------|
| Transistor                                                    | l                |              |            |
| Collector-Base Voltage                                        | V <sub>CBO</sub> | -20          | V          |
| Collector-Emitter Voltage                                     | V <sub>CEO</sub> | -12          | V          |
| Emitter-Base Voltage                                          | V <sub>EBO</sub> | -7.5         | V          |
| Peak Pulse Current                                            | I <sub>CM</sub>  | -12          | А          |
| Continuous Collector Current (a)(f)                           | Ι <sub>C</sub>   | -4           | А          |
| Continuous Collector Current (b)(f)                           | Ι <sub>C</sub>   | -4.4         | А          |
| Base Current                                                  | I <sub>B</sub>   | 1000         | mA         |
| Power Dissipation at TA=25°C (a)(f)<br>Linear Derating Factor | P <sub>D</sub>   | 1.5<br>12    | W<br>mW/°C |
| Power Dissipation at TA=25°C (b)(f)<br>Linear Derating Factor | P <sub>D</sub>   | 2.45<br>19.6 | W<br>mW/°C |
| Power Dissipation at TA=25°C (c)(f)<br>Linear Derating Factor | P <sub>D</sub>   | 1<br>8       | W<br>mW/°C |
| Power Dissipation at TA=25°C (d)(f)<br>Linear Derating Factor | P <sub>D</sub>   | 1.13<br>9    | W<br>mW/°C |
| Power Dissipation at TA=25°C (d)(g)<br>Linear Derating Factor | P <sub>D</sub>   | 1.7<br>13.6  | W<br>mW/°C |
| Power Dissipation at TA=25°C (e)(g)<br>Linear Derating Factor | P <sub>D</sub>   | 3<br>24      | W<br>mW/°C |
| Storage Temperature Range                                     | T <sub>stg</sub> | -55 to +150  | °C         |
| Junction Temperature                                          | Ti               | 150          | °C         |

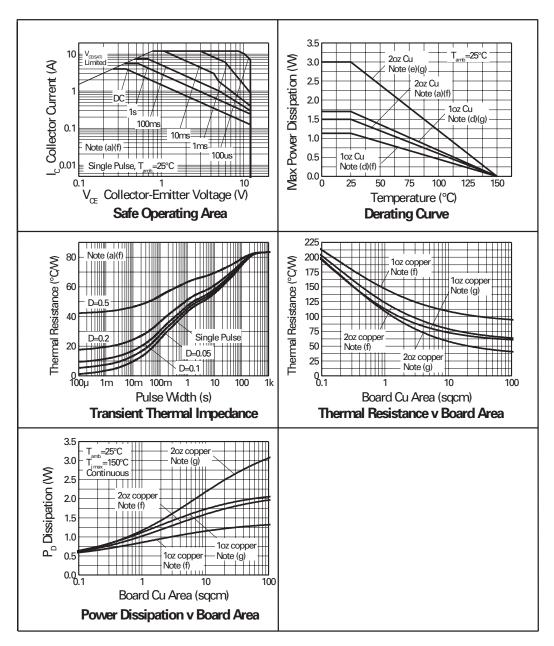
#### THERMAL RESISTANCE

| PARAMETER                  | SYMBOL           | VALUE | UNIT |
|----------------------------|------------------|-------|------|
| Junction to Ambient (a)(f) | R <sub>θJA</sub> | 83    | °C/W |
| Junction to Ambient (b)(f) | R <sub>θJA</sub> | 51    | °C/W |
| Junction to Ambient (c)(f) | R <sub>θJA</sub> | 125   | °C/W |
| Junction to Ambient (d)(f) | R <sub>θJA</sub> | 111   | °C/W |
| Junction to Ambient (d)(g) | R <sub>θJA</sub> | 73.5  | °C/W |
| Junction to Ambient (e)(g) | R <sub>θJA</sub> | 41.7  | °C/W |

Notes

(a) For a dual device surface mounted on 8 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with all exposed pads attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.

(b) Measured at t<5 secs for a dual device surface mounted on 8 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with all exposed pads attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.</li>
(c) For a dual device surface mounted on 8 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with all exposed pads attached attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.
(e) For a dual device surface mounted on 10 sq cm single sided 1oz copper on FR4 PCB, in still air conditions with all exposed pads attached attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.
(e) For a dual device surface mounted on 85 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with all exposed pads attached attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.
(f) For a dual device surface mounted on 85 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with all exposed pads attached attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.
(f) For a dual device with one active die.


(g) For dual device with 2 active die running at equal power.

(h) Repetitive rating - pulse width limited by max junction temperature. Refer to Transient Thermal Impedance graph.

(i) The minimum copper dimensions required for mounting are no smaller than the exposed metal pads on the base of the device as shown in the package dimensions data. The thermal resistance for a dual device mounted on 1.5mm thick FR4 board using minimum copper 1 oz weight, 1mm wide tracks and one half of the device active is Rth = 250°C/W giving a power rating of Ptot = 500mW.

2





3

#### TRANSISTOR TYPICAL CHARACTERISTICS

ISSUE 1 - JUNE 2002

ZETEX

### ABSOLUTE MAXIMUM RATINGS.

| PARAMETER                                                     | SYMBOL           | VALUE        | UNIT       |
|---------------------------------------------------------------|------------------|--------------|------------|
| Schottky Diode                                                |                  |              |            |
| Continuous Reverse Voltage                                    | V <sub>R</sub>   | 40           | V          |
| Forward Voltage @ I <sub>F</sub> =1000mA(typ)                 | V <sub>F</sub>   | 425          | А          |
| Forward Current                                               | I <sub>F</sub>   | 1850         | mA         |
| Average Peak Forward Current D=50%                            | I <sub>FAV</sub> | 3            | А          |
| Non Repetitive Forward Current t≤ 100µs<br>t≤ 10ms            | I <sub>FSM</sub> | 12<br>7      | A<br>A     |
| Power Dissipation at TA=25°C (a)(f)<br>Linear Derating Factor | PD               | 1.2<br>12    | W<br>mW/°C |
| Power Dissipation at TA=25°C (b)(f)<br>Linear Derating Factor | PD               | 2<br>20      | W<br>mW/°C |
| Power Dissipation at TA=25°C (c)(f)<br>Linear Derating Factor | PD               | 0.8<br>8     | W<br>mW/°C |
| Power Dissipation at TA=25°C (d)(f)<br>Linear Derating Factor | PD               | 0.9<br>9     | W<br>mW/°C |
| Power Dissipation at TA=25°C (d)(g)<br>Linear Derating Factor | P <sub>D</sub>   | 1.36<br>13.6 | W<br>mW/°C |
| Power Dissipation at TA=25°C (e)(g)<br>Linear Derating Factor | PD               | 2.4<br>24    | W<br>mW/°C |
| Storage Temperature Range                                     | T <sub>stg</sub> | -55 to +150  | °C         |
| Junction Temperature                                          | Ti               | 125          | °C         |

## THERMAL RESISTANCE

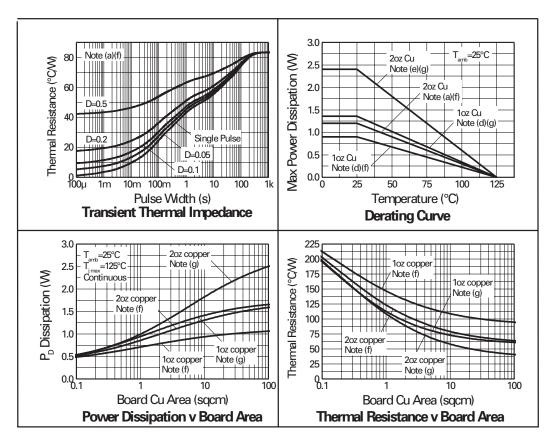
| PARAMETER                  | SYMBOL           | VALUE | UNIT |
|----------------------------|------------------|-------|------|
| Junction to Ambient (a)(f) | R <sub>0JA</sub> | 83    | °C/W |
| Junction to Ambient (b)(f) | R <sub>0JA</sub> | 51    | °C/W |
| Junction to Ambient (c)(f) | R <sub>0JA</sub> | 125   | °C/W |
| Junction to Ambient (d)(f) | R <sub>0JA</sub> | 111   | °C/W |
| Junction to Ambient (d)(g) | R <sub>0JA</sub> | 73.5  | °C/W |
| Junction to Ambient (e)(g) | R <sub>θJA</sub> | 41.7  | °C/W |

Notes

(a) For a dual device surface mounted on 8 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with all exposed pads attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.

(b) Measured at t<5 secs for a dual device surface mounted on 8 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with all exposed pads attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.</li>
(c) For a dual device surface mounted on 8 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with all exposed pads attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.
(d) For a dual device surface mounted on 10 sq cm single sided 1oz copper on FR4 PCB, in still air conditions with all exposed pads attached attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.
(e) For a dual device surface mounted on 8 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with all exposed pads attached attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.
(e) For a dual device surface mounted on 8 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with all exposed pads attached attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.

(f) For a dual device with one active die.


(g) For dual device with 2 active die running at equal power.

(h) Repetitive rating - pulse width limited by max junction temperature. Refer to Transient Thermal Impedance graph.

(i) The minimum copper dimensions required for mounting are no smaller than the exposed metal pads on the base of the device as shown in the package dimensions data. The thermal resistance for a dual device mounted on 1.5mm thick FR4 board using minimum copper 1 oz weight, 1mm wide tracks and one half of the device active is Rth = 250°C/W giving a power rating of Ptot = 400mW.

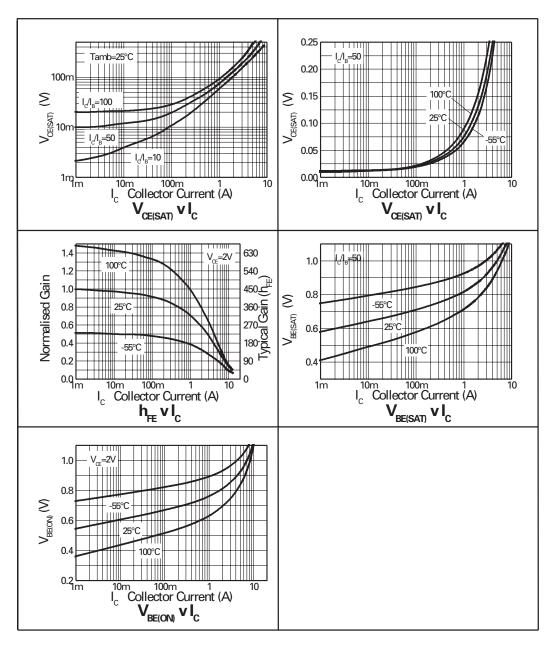
4





#### SCHOTTKY TYPICAL CHARACTERISTICS



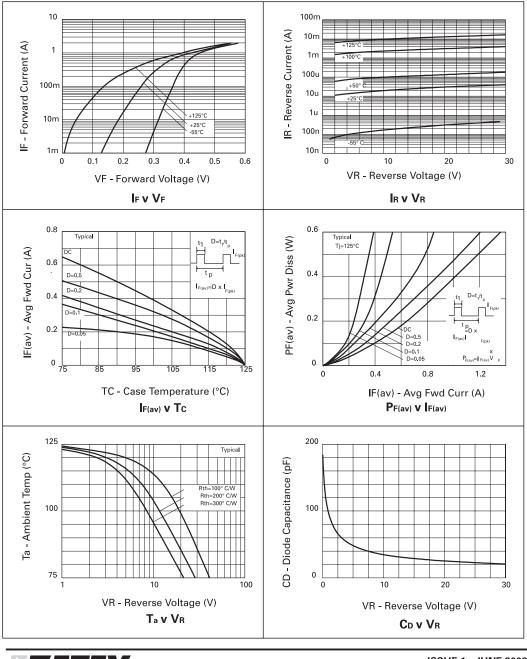

| PARAMETER                                | SYMBOL               | MIN.                          | TYP.                                                 | MAX.                                              | UNIT                                   | CONDITIONS.                                                                                                                                                                                                                                  |
|------------------------------------------|----------------------|-------------------------------|------------------------------------------------------|---------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TRANSISTOR ELECTRICAL CHARA              | CTERISTICS           |                               |                                                      |                                                   |                                        |                                                                                                                                                                                                                                              |
| Collector-Base Breakdown<br>Voltage      | V <sub>(BR)CBO</sub> | -20                           | -35                                                  |                                                   | V                                      | I <sub>C</sub> =-100μA                                                                                                                                                                                                                       |
| Collector-Emitter Breakdown<br>Voltage   | V <sub>(BR)CEO</sub> | -12                           | -25                                                  |                                                   | V                                      | I <sub>C</sub> =-10mA*                                                                                                                                                                                                                       |
| Emitter-Base Breakdown Voltage           | V <sub>(BR)EBO</sub> | -7.5                          | -8.5                                                 |                                                   | V                                      | I <sub>E</sub> =-100μA                                                                                                                                                                                                                       |
| Collector Cut-Off Current                | I <sub>CBO</sub>     |                               |                                                      | -25                                               | nA                                     | V <sub>CB</sub> =-16V                                                                                                                                                                                                                        |
| Emitter Cut-Off Current                  | I <sub>EBO</sub>     |                               |                                                      | -25                                               | nA                                     | V <sub>EB</sub> =-6V                                                                                                                                                                                                                         |
| Collector Emitter Cut-Off Current        | I <sub>CES</sub>     |                               |                                                      | -25                                               | nA                                     | V <sub>CES</sub> =-10V                                                                                                                                                                                                                       |
| Collector-Emitter Saturation<br>Voltage  | V <sub>CE(sat)</sub> |                               | -10<br>-100<br>-100<br>-195<br>-240                  | -17<br>-140<br>-150<br>-300<br>-300               | mV<br>mV<br>mV<br>mV<br>mV             | I <sub>C</sub> =-0.1A, I <sub>B</sub> =-10mA*<br>I <sub>C</sub> =-1A, I <sub>B</sub> =-10mA*<br>I <sub>C</sub> =-1.5A, I <sub>B</sub> =-50mA*<br>I <sub>C</sub> =-3A, I <sub>B</sub> =-50mA*<br>I <sub>C</sub> =-4A, I <sub>B</sub> =-150mA* |
| Base-Emitter Saturation Voltage          | V <sub>BE(sat)</sub> |                               | -0.97                                                | -1.05                                             | V                                      | I <sub>C</sub> =-4A, I <sub>B</sub> =-150mA*                                                                                                                                                                                                 |
| Base-Emitter Turn-On Voltage             | V <sub>BE(on)</sub>  |                               | -0.87                                                | -0.950                                            | V                                      | I <sub>C</sub> =-4A, V <sub>CE</sub> =-2V*                                                                                                                                                                                                   |
| Static Forward Current Transfer<br>Ratio | h <sub>FE</sub>      | 300<br>300<br>180<br>60<br>45 | 475<br>450<br>275<br>100<br>70                       |                                                   |                                        | I <sub>C</sub> =-10mA, V <sub>CE</sub> =-2V*<br>I <sub>C</sub> =-0.1A, V <sub>CE</sub> =-2V*<br>I <sub>C</sub> =-2.5A, V <sub>CE</sub> =-2V*<br>I <sub>C</sub> =-8A, V <sub>CE</sub> =-2V*<br>I <sub>C</sub> =-10A, V <sub>CE</sub> =-2V*    |
| Transition Frequency                     | f <sub>T</sub>       | 100                           | 110                                                  |                                                   | MHz                                    | I <sub>C</sub> =-50mA, V <sub>CE</sub> =-10V<br>f=100MHz                                                                                                                                                                                     |
| Output Capacitance                       | C <sub>obo</sub>     |                               | 21                                                   | 30                                                | pF                                     | V <sub>CB</sub> =-10V, f=1MHz                                                                                                                                                                                                                |
| Turn-On Time                             | t <sub>(on)</sub>    |                               | 70                                                   |                                                   | ns                                     | V <sub>CC</sub> =-6V, I <sub>C</sub> =-2A                                                                                                                                                                                                    |
| Turn-Off Time                            | t <sub>(off)</sub>   |                               | 130                                                  |                                                   | ns                                     | I <sub>B1</sub> =I <sub>B2</sub> =-50mA                                                                                                                                                                                                      |
| SCHOTTKY DIODE ELECTRICAL CH             | ARACTERIS            | TICS                          |                                                      |                                                   |                                        |                                                                                                                                                                                                                                              |
| Reverse Breakdown Voltage                | V <sub>(BR)R</sub>   | 40                            | 60                                                   |                                                   | V                                      | I <sub>R</sub> =300μA                                                                                                                                                                                                                        |
| Forward Voltage                          | V <sub>F</sub>       |                               | 240<br>265<br>305<br>355<br>390<br>425<br>495<br>420 | 270<br>290<br>340<br>400<br>450<br>500<br>600<br> | mV<br>mV<br>mV<br>mV<br>mV<br>mV<br>mV | $I_{F}=50mA^{*}$ $I_{F}=100mA^{*}$ $I_{F}=250mA^{*}$ $I_{F}=500mA^{*}$ $I_{F}=750mA^{*}$ $I_{F}=1000mA^{*}$ $I_{F}=1500mA^{*}$ $I_{F}=1000mA,T_{a}=100^{\circ}C^{*}$                                                                         |
| Reverse Current                          | I <sub>R</sub>       |                               | 50                                                   | 100                                               | μΑ                                     | V <sub>R</sub> =30V                                                                                                                                                                                                                          |
| Diode Capacitance                        | CD                   |                               | 25                                                   |                                                   | pF                                     | f=1MHz,V <sub>R</sub> =25V                                                                                                                                                                                                                   |
| Reverse Recovery<br>Time                 | t <sub>rr</sub>      |                               | 12                                                   |                                                   | ns                                     | switched from<br>$I_F = 500$ mA to $I_R = 500$ mA<br>Measured at $I_R = 50$ mA                                                                                                                                                               |

6

## **ELECTRICAL CHARACTERISTICS** (at $T_{amb} = 25^{\circ}C$ unless otherwise stated).

\*Measured under pulsed conditions.

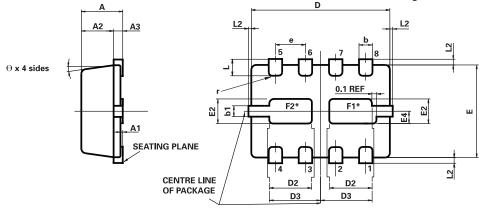





7

#### TRANSISTOR TYPICAL CHARACTERISTICS

ISSUE 1 - JUNE 2002


ZETEX



8

### SCHOTTKY TYPICAL CHARACTERISTICS

ZETEX



MLP832 PACKAGE OUTLINE (3mm x 2mm Micro Leaded Package)

\*Exposed Flags. Solder connection to improve thermal dissipation is optional. F1 at collector 1 potential

F2 at collector 2 potential

CONTROLLING DIMENSIONS IN MILLIMETRES APPROX. CONVERTED DIMENSIONS IN INCHES

#### MLP832 PACKAGE DIMENSIONS

|     | MILLIN | IETRES | INC       | HES    |     | MILLIMETRES |       | INCHES |        |
|-----|--------|--------|-----------|--------|-----|-------------|-------|--------|--------|
| DIM | MIN.   | MAX.   | MIN.      | MAX.   | DIM | MIN.        | MAX.  | MIN.   | MAX.   |
| А   | 0.80   | 1.00   | 0.031     | 0.039  | е   | 0.65        | REF   | 0.025  | 6 BSC  |
| A1  | 0.00   | 0.05   | 0.00      | 0.002  | E   | 2.00        | BSC   | 0.0787 | BSC    |
| A2  | 0.65   | 0.75   | 0.0255    | 0.0295 | E2  | 0.43        | 0.63  | 0.017  | 0.0249 |
| A3  | 0.15   | 0.25   | 0.006     | 0.0098 | E4  | 0.16        | 0.36  | 0.006  | 0.014  |
| b   | 0.24   | 0.34   | 0.009     | 0.013  | L   | 0.20        | 0.45  | 0.0078 | 0.0157 |
| b1  | 0.17   | 0.30   | 0.0066    | 0.0118 | L2  |             | 0.125 | 0.00   | 0.005  |
| D   | 3.00   | BSC    | 0.118 BSC |        | r   | 0.075       | BSC   | 0.002  | 9 BSC  |
| D2  | 0.82   | 1.02   | 0.032     | 0.040  | θ   | 0°          | 12°   | 0°     | 12°    |
| D3  | 1.01   | 1.21   | 0.0397    | 0.0476 |     |             |       |        |        |

#### © Zetex plc 2002

| Europe                      |                             | Americas                  | Asia Pacific                |
|-----------------------------|-----------------------------|---------------------------|-----------------------------|
| Zetex plc                   | Zetex GmbH                  | Zetex Inc                 | Zetex (Asia) Ltd            |
| Fields New Road             | Streitfeldstraße 19         | 700 Veterans Memorial Hwy | 3701-04 Metroplaza, Tower 1 |
| Chadderton                  | D-81673 München             | Hauppauge, NY11788        | Hing Fong Road              |
| Oldham, OL9 8NP             |                             |                           | Kwai Fong                   |
| United Kingdom              | Germany                     | USA                       | Hong Kong                   |
| Telephone (44) 161 622 4422 | Telefon: (49) 89 45 49 49 0 | Telephone: (631) 360 2222 | Telephone: (852) 26100 611  |
| Fax: (44) 161 622 4420      | Fax: (49) 89 45 49 49 49    | Fax: (631) 360 8222       | Fax: (852) 24250 494        |
| uksales@zetex.com           | europe.sales@zetex.com      | usa.sales@zetex.com       | asia.sales@zetex.com        |

These offices are supported by agents and distributors in major countries world-wide.

This publication is issued to provide outline information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned. The Company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

For the latest product information, log on to www.zetex.com

