

LM397

Single General Purpose Voltage Comparator

General Description

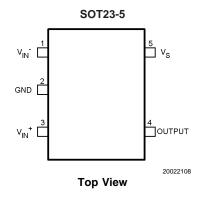
The LM397 is a single voltage comparator with an input common mode that includes ground. The LM397 is designed to operate from a single 5V to 30V power supply or a split power supply. Its low supply current is virtually independent of the magnitude of the supply voltage.

The LM397 features an open collector output stage. This allows the connection of an external resistor at the output. The output can directly interface with TTL, CMOS and other logic levels, by tying the resistor to different voltage levels (level translator).

The LM397 is available in space saving SOT23-5 package and pin compatible to TI's TL331, single differential comparator.

Features

(T_A = 25°C. Typical values unless otherwise specified).


- SOT23-5 package
- Industrial operating range -40°C to +85°C
- Single or dual power supplies
- Wide supply voltage range
- Low supply current
- Low input bias current
- Low input offset current
- Low input onset current
- Low input offset voltageResponse time
- = land to a manage and a contract
- Input common mode voltage

- 5V to 30V
 - 300µA
 - 7nA
- ±1nA
- ±2mV
- 440ns (50mV overdrive)
 - 0 to V_S 1.5V

Applications

- A/D converters
- Pulse, square wave generators
- Peak detector
- Industrial applications

Connection Diagram

Typical Circuit

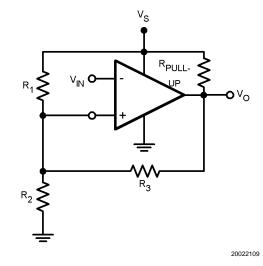


FIGURE 1. Inverting Comparator with Hysteresis

Ordering Information

Package	Part Number	Package Marking	Transport Media	NSC Drawing
5-Pin SOT-23	LM397MF	C397	1k Units Tape and Reel	MF05A
	LM397MFX		3k Units Tape and Reel	

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance

Human Body Model 2KV (Note 2) 200V (Note 3) Machine Model

V_{IN} Differential 30V

30V or ±15V Supply Voltages

-65°C to +150°C Storage Temperature Range

Voltage at Input Pins -0.3V to 30V Junction Temperature (Note 4) +150°C

Soldering Information

Infrared or Convection (20 sec.) 235°C Wave Soldering (10 sec.) 260°C

Operating Ratings (Note 1)

5V to 30V Supply Voltage, V_S

Junction Temperature Range (Note 4) -40°C to +85°C

Package Thermal Resistance (Note 4)

SOT23-5 168°C/W

Electrical Characteristics Unless otherwise specified, all limits guaranteed for at $T_J = 25$ °C, $V_S = 5$ V. Boldface limits apply at temperature extremes.

Symbol	Parameter	Conditions	Min (Note 6)	Typ (Note 5)	Max (Note 6)	Units
V _{OS}	Input Offset Voltage	$V_S = 5V \text{ to } 30V,$	(Note 0)	2	7	mV
*OS	input onoct voltage	$V_{O} = 1.4V, V_{CM} = 0V$		_	10	
I _{os}	Input Offset Current	V _O = 1.4V, V _{CM} = 0V		1.6	50	nA
					250	
I _B	Input Bias Current	$V_{O} = 1.4V, V_{CM} = 0V$		10	250	nA
					400	
I _s	Supply Current	R _L = Open, V _S = 5V		0.25	0.7	mA
		R _L = Open, V _S = 30V		0.30	2	IIIA
Io	Output Sink Current	$V_{IN^{+}} = 1V, V_{IN^{-}} = 0V, V_{O} = 1.5V$	6	13		mA
I _{LEAKAGE}	Output Leakage Current	$V_{IN^{+}} = 1V, V_{IN^{-}} = 0V, V_{O} = 5V$		0.1		nA
		$V_{IN^{+}} = 1V, V_{IN^{-}} = 0V, V_{O} = 30V$		1		μA
V _{OL}	Output Voltage Low	$I_{O} = -4\text{mA}, V_{IN^{+}} = 0\text{V}, V_{IN^{-}} = 1\text{V}$		180	400	mV
					700	
V _{CM}	Common-Mode Input Voltage	V _S = 5V to 30V (Note 7)	V _S - 1.5V		0	V
	Range		V _s - 2V		0	V

Electrical Characteristics Unless otherwise specified, all limits guaranteed for at $T_J = 25^{\circ}C$, $V_S = 5V$. **Boldface** limits apply at temperature extremes. (Continued)

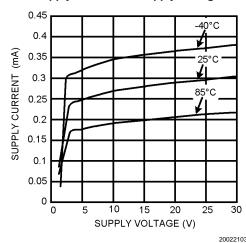
Symbol Parameter		Conditions	Min	Тур	Max	Units
			(Note 6)	(Note 5)	(Note 6)	
A _V Voltage Gain		$V_S = 15V, V_O = 1.4V \text{ to } 11.4V,$		120		V/mV
		$R_L > = 15k\Omega$ connected to V_S				
t _{PHL}	Propagation Delay (High to Low)	Input Overdrive = 5mV		900		
		$R_L = 5.1k\Omega$ connected to 5V,				
		$C_L = 15pF$				20
		Input Overdrive = 50mV		250		ns
		$R_L = 5.1k\Omega$ connected to 5V,				
		$C_L = 15pF$				
t _{PLH}	Propagation Delay (Low to High)	Input Overdrive = 5mV		940		μs
		$R_L = 5.1k\Omega$ connected to 5V,				
		$C_L = 15pF$				
		Input Overdrive = 50mV		440		ns
		$R_L = 5.1k\Omega$ connected to 5V,				
		$C_L = 15pF$				

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.

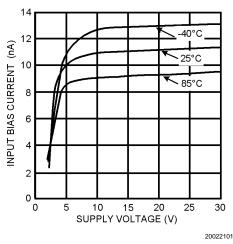
Note 2: Human body model, $1.5k\Omega$ in series with 100pF.

Note 3: Machine model, 0Ω in series with 200pF.

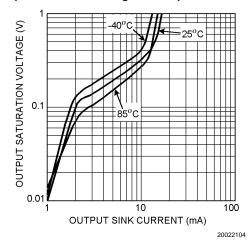
Note 4: The maximum power dissipation is a function of $T_{J(MAX)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} - T_A)/\theta_{JA}$. All numbers apply for packages soldered directly onto a PC board.

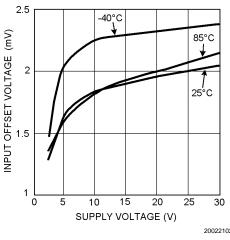

Note 5: Typical values represent the most likely parametric norm.

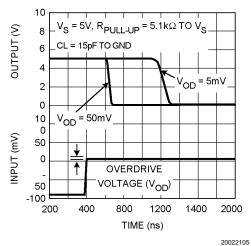
Note 6: All limits are guaranteed by testing or statistical analysis.

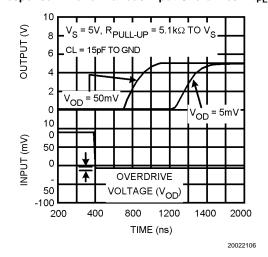

Note 7: The input common-mode voltage of either input should not be permitted to go below the negative rail by more than 0.3V. The upper end of the common-mode voltage range is V_S - 1.5V at 25°C.

Typical Performance Characteristics $T_A = 25$ °C. Unless otherwise specified.

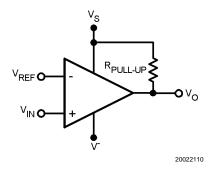

Supply Current vs. Supply Voltage


Input Bias Current vs. Supply Current


Output Saturation Voltage vs. Output Sink Current


Input Offset Voltage vs. Supply Voltage

Response Time for Various Input Overdrives - t_{PHL}


Response Time for Various Input Overdrives – t_{PLH}

Application Notes

Basic Comparators

A comparator is quite often used to convert an analog signal to a digital signal. The comparator compares an input voltage (V_{IN}) at the non-inverting pin to the reference voltage (V_{REF}) at the inverting pin. If V_{IN} is less than V_{REF} the output (V_O) is low (V_{OL}). However, if V_{IN} is greater than V_{REF}, the output voltage (V_O) is high (V_{OH}). Refer to Figure 2.

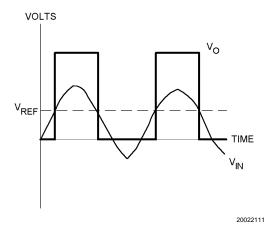
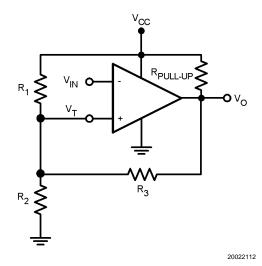


FIGURE 2. Basic Comparator

Hysteresis

The basic comparator configuration may oscillate or produce a noisy output if the applied differential input is near the comparator's input offset voltage. This tends to occur when the voltage on the input is equal or very close to the other input voltage. Adding hysteresis can prevent this problem. Hysteresis creates two switching thresholds (one for the rising input voltage and the other for the falling input voltage). Hysteresis is the voltage difference between the two switching thresholds. When both inputs are nearly equal, hysteresis causes one input to effectively move quickly pass the other. Thus, effectively moving the input out of region that oscillation may occur.

For an inverting configured comparator, hysteresis can be added with a three resistor network and positive feedback. When input voltage $(\mathsf{V}_{\mathsf{IN}})$ at the inverting node is less than non-inverting node $(\mathsf{V}_{\mathsf{T}})$, the output is high. The equivalent circuit for the three resistor network is R_1 in parallel with R_3 and in series with R_2 . The lower threshold voltage $\mathsf{V}_{\mathsf{T}1}$ is calculated by:


$$V_{T1} = ((V_S R_2) / (((R_1 R_3) / (R_1 + R_3)) + R_2))$$

When V_{IN} is greater than V_{T} , the output voltage is low. The equivalent circuit for the three resistor network is R_2 in parallel with R_3 and in series with R_1 . The upper threshold voltage V_{T2} is calculated by:

$$V_{T2} = V_S ((R_2 R_3) / (R_2 + R_3)) / (R_1 + ((R_2 R_3) / (R_2 + R_3)))$$

The hysteresis is defined as

$$\Delta V_{IN} = V_{T1} - V_{T2}$$

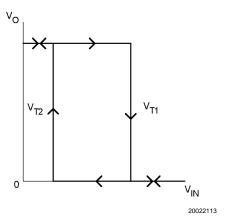


FIGURE 3. Inverting Configured Comparator - LM397

5 www.national.com

Application Notes (Continued)

Input Stage

The LM397 has a bipolar input stage. The input common mode voltage range is from 0 to ($V_S-1.5V$).

Output Stage

The LM397 has an open collector grounded-emitter NPN output transistor for the output stage. This requires an external pull-up resistor connected between the positive supply voltage and the output. The external pull-up resistor should be high enough resistance so to avoid excessive power dissipation. In addition, the pull-up resistor should be low enough resistance to enable the comparator to switch with the load circuitry connected. Because it is an open collector output stage, several comparator outputs can be connected together to create an OR'ing function output. With an open collector, the output can be used as a simple SPST switch to ground. The amount of current which the output can sink is approximately 10mA. When the maximum current limit is reached, the output transistor will saturate and the output will rise rapidly (Figure 4).

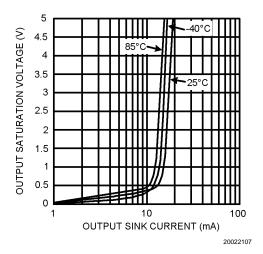
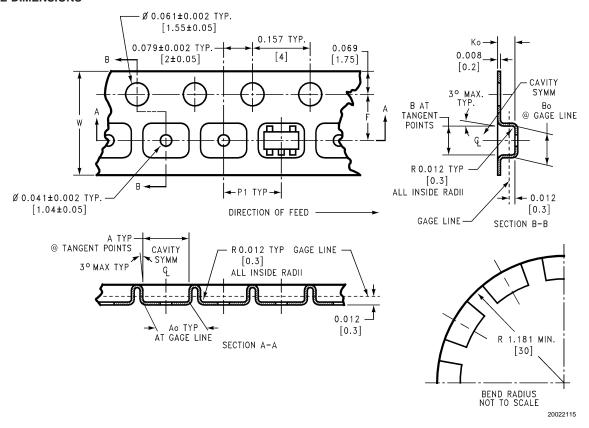


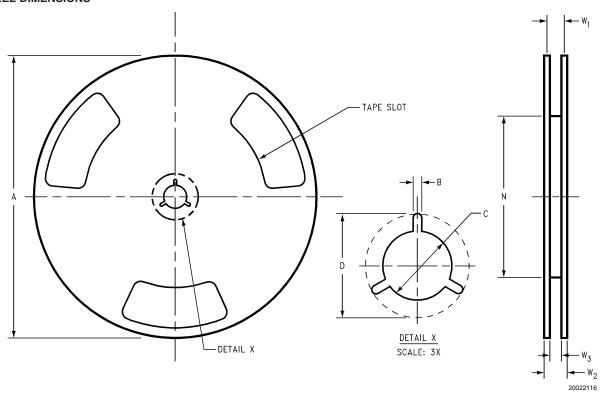
FIGURE 4. Output Saturation Voltage vs. Output Sink Current


www.national.com

SOT23-5 Tape and Reel Specification

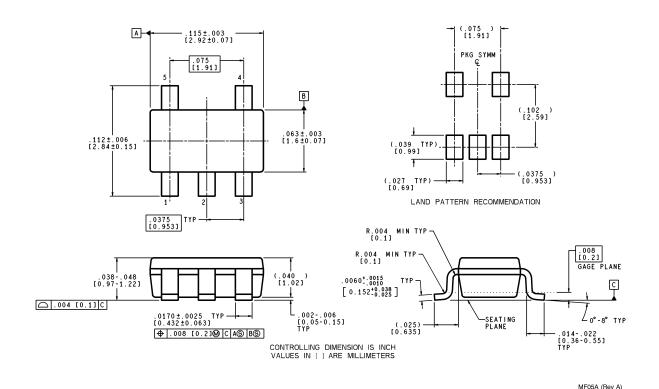
Tape Format

Tape Section	# Cavities	Cavity Status	Cover Tape Status	
Leader (Start End)	0 (min)	Empty	Sealed	
	75 (min)	Empty	Sealed	
Carrier	3000	Filled	Sealed	
	1000	Filled	Sealed	
Trailer (Hub End)	125 (min)	Empty	Sealed	
	0 (min)	Empty	Sealed	


TAPE DIMENSIONS

8mm	0.130	0.124	0.130	0.126	0.138 ± 0.002	0.055 ± 0.004	0.157	0.315 ± 0.012
	(3.3)	(3.15)	(3.3)	(3.2)	(3.5 ± 0.05)	(1.4 ± 0.11)	(4)	(8 ± 0.3)
Tape Size	DIM A	DIM Ao	DIM B	DIM Bo	DIM F	DIM Ko	DIM P1	DIM W

SOT23-5 Tape and Reel Specification (Continued)


REEL DIMENSIONS

8mm	7.00	0.059	0.512	0.795	2.165	0.331 + 0.059/-0.000	0.567	W1 + 0.078/-0.039
	330.00	1.50	13.00	20.20	55.00	8.40 + 1.50/-0.00	14.40	W1 + 2.00/–1.00
Tape Size	Α	В	С	D	N	W1	W2	W3

www.national.com 8

Physical Dimensions inches (millimeters) unless otherwise noted

5-Pin SOT23 NS Package Number MF05A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.national.com

National Semiconductor

Europe

Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171

Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466

Fax: 65-2504466 Email: ap.support@nsc.com **National Semiconductor** Tel: 81-3-5639-7560 Fax: 81-3-5639-7507

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.