
C430__X555

Powerex, Inc. Hillis Street, Youngwood, Pennsylvania 15697 (412) 925-7272 Powerex Europe, S.A., 428 Ave. G. Durand, BP107, 72003 LeMans, France (43) 72.75.15 Phase Control SCR 760 Amperes Avg 500-1300 Volts

C430_X555 Outline Drawing

	Inc	hes	Millimeters	
Dimensions	Min.	Max.	Min.	Max.
A	.560	.605	14.22	15.37
В	.985	.995	25.01	25.27
С	1.600	1.650	40.64	41.91
D	.030	-	.76	
Ε	.040		1.01	
G	.057	.059	1.44	1.50
Н	.186	.191	4.72	4.85
J	.245	.255	6.22	6.48
K	.115	.130	2.92	3.30
L	.064	.070	1.62	1.78
M	_	1.120	_	28.45
N	-	1.585	_	40.26
Р	.135	.145	3.42	3.68
Q	.070	.084	1.77	2.13
R		.875		22.23
S	12.219	12.343	310.36	313.51
T	.137	.153	3.47	3.89

C430__X555
Phase Control SCR
760 Amperes/500-1300 Volts

Description

Powerex Silicon Controlled Rectifiers (SCR) are designed for phase control applications. These are all-diffused, Press-Pak (Pow-R-Disc) devices employing the field-proven amplifying (di/namic) gate.

Features:

- □ Low On-State Voltage
- ☐ High di/dt
- ☐ High dv/dt
- ☐ Hermetic Packaging
- □ Excellent Surge and I²t Ratings
- ☐ High Temperature Operation

Applications:

- ☐ Power Supplies
- ☐ Battery Chargers
- ☐ Motor Control
- Light Dimmers
- ☐ VAR Generators

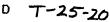
Ordering Information

Example: Select the complete nine or ten digit part number you desire from the table – i.e. C430NX555 is a 800 Volt, 760 Ampere Phase Control SCR.

Туре	Voltage		Current	
	Vorm Vram	Code	ir (avg)	
C430X555	500	E	760	
	600	M		
	700	S		
	800	N		
	900	Т		
ĺ	1000	Р]	
	1100	PA		
[1200	PB		
	1300	PC]	

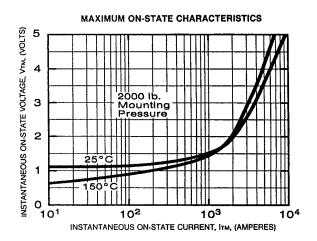
02

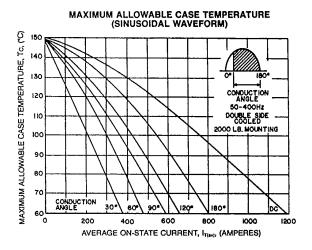
C430__X555 Phase Control SCR 760 Amperes Avg/500-1300 Volts

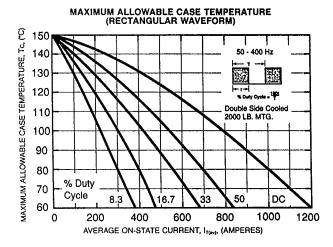

Absolute Maximum Ratings

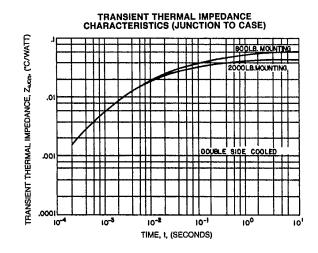
	Symbol	C430X555	Units
RMS On-State Current	I _{T(RMS)}	1200	A === ===
Average On-State Current			Amperes
Peak One-Cycle Surge (Non-Repetitive) On-State Current (60Hz)	T(av)	760 8000	Amperes
Peak One-Cycle Surge (Non-Repetitive) On-State Current (50Hz)	I _{TSM}	7300	Amperes
Critical Rate-of-Rise of On-State Current (Non-Repetitive)	di/dt	400	Amperes
Critical Rate-of-Rise of On-State Current (Repetitive)	di/dt	150	Amperes/μs
I²t (for Fusing), One Cycle at 60Hz	l²t	265,000	Amperes/μs
Peak Gate Power Dissipation	P _{GM}	200	A ² sec
Average Gate Power Dissipation	P _{G(av)}	5	Watts
Storage Temperature	T _{STG}		Watts
Operating Temperature		-40 to 150	*C
Mounting Force®	T _J	-40 to 150	℃
Mounting Force®		800 to 2500	lb.
Modified Lorda		3.6 to 11.1	kN

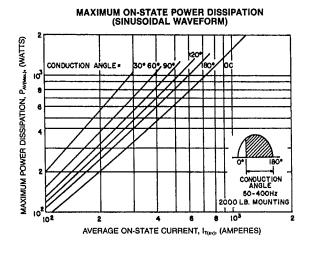
Electrical and Thermal Characteristics

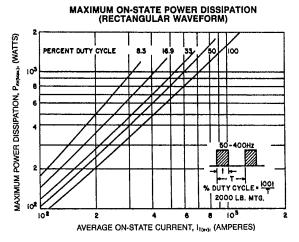

Characteristics	Symbol	Test Conditions	C430X555	Units
Voltage—Blocking State Maximums®				
Forward Leakage, Peak	I _{DRM}	$T_{J} = 150^{\circ}C, V = V_{DRM}$	50	mA
Reverse Leakage, Peak	I _{RRM}	$T_J = 150$ °C, $V = V_{RRM}$	50	mA
Current—Conducting State Maximums Peak On-State Voltage (2000 lb.)	V _{TM}	I _{TM} = 3000A Peak, T _C = 25°C, Duty Cycle ≤ 0.01%	2.4	Volts
Peak On-State Voltage (800 lb.)	V _{TM}	I _{TM} = 3000A Peak, T _C = 25°C, Duty Cycle ≤ 0.01%	2.53	Volts
Switching Typical Turn-Off Time	t _q	T _J = 150°C, I _{TM} = 1000A, V _R = 50V Min; V _{DRM} (Reapplied); Reapplied dv/dt = 200V/μsec (linear); Commutation dl/dt = 25A/μsec; Repetition Rate = 1pps, Gate Bias during Turn-Off Interval = 0V, 100Ω	100	μsec
Typical Delay Time	t _d	$T_C = 25^{\circ}\text{C}$, $I_T = 50\text{A}$, Gate Supply: 20V, 20Ω , $0.1\mu\text{sec}$ rise time	.7	μsec
Min. Critical dv/dt exponential to VDRM	dv/dt	T _J = 150°C, gate open	100	V/usec
Thermal and Mechanical Maximum Thermal Resistance, [©] double sided cooling Junction to Case (2000 lb. force)	Rac	<u> </u>		<u> </u>
Case to Sink, Lubricated (2000 lb. force)	R _{ecs}		.045	°C/Watt
Gate—Maximum Parameters	THCS		.02	°C/Watt
Gate Current to Trigger	l _{GT}	$V_D = 6 V dc, R_L = 3 ohms, T_J = 150 °C$	150	mA
Gate Voltage to Trigger	V _{GT}	$V_0 = 6 \text{Vdc}, T_J = -40 \text{ to } 150^{\circ}\text{C}$	5	Volts
Non-Triggering Gate Voltage	V_{GDM}		.15	Volts
Peak Forward Gate Current	I _{GTM}		10	Amperes
Peak Reverse Gate Voltage	V _{GRM}		5	Volts

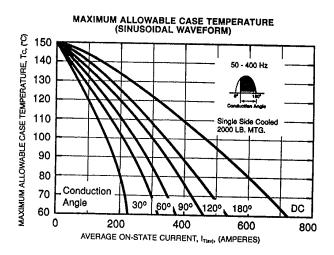

① Consult recommended mounting procedures.

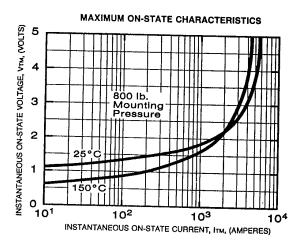


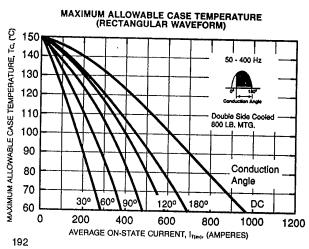


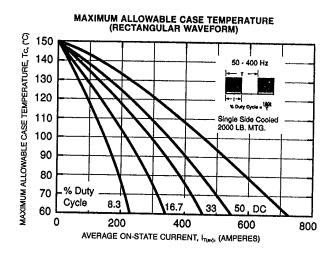

C430__X555 Phase Control SCR 760 Amperes Avg/500-1300 Volts

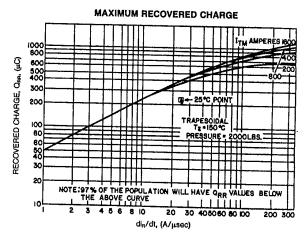


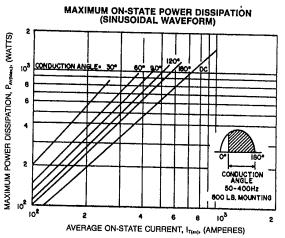


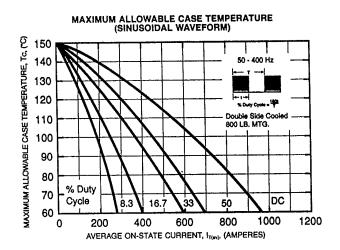


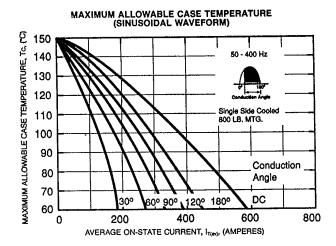


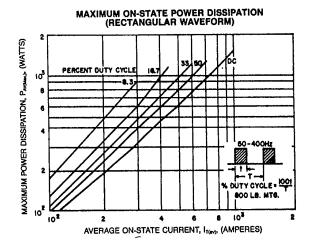



C430__X555 Phase Control SCR 760 Amperes Avg/500-1300 Volts

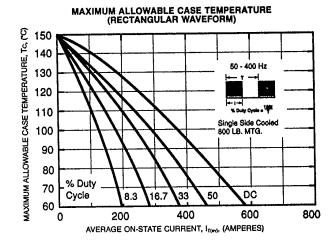


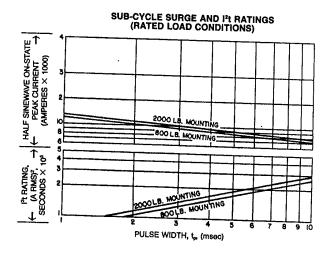


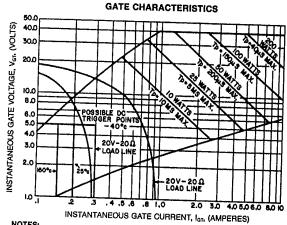




02


C430_X555 Phase Control SCR 760 Amperes Avg/500-1300 Volts




D

C430__X555 Phase Control SCR 760 Amperes Avg/500-1300 Volts

- NOTES:

 1. Maximum allowable average gate dissipation = 5 watts.

 2. The locus of possible dc trigger points lie outside the boundaries shown at various
- The locus or possible of argyer points he obtained the countries shown at twice case temperatures.
 Tp = Rectangular gate current pulse width (5µs min. duration; 1.0µs max. rise time for 20V, 65Ω source).
 20V = 20Ω is the minimum gate source load line when rate of circuit current rise > 100 Amp/µs or anode rate of current rise > 200 Amps/µs (Tp = 5µs min., 0.5µs max. rise time).

Maximum long-term repetitive anode di/dt = 500 Amps/ μs with 20V - 20 Ω gate