CONSTANT VOLTAGE AND CONSTANT CURRENT CONTROLLER FOR ADATPTORS AND BATTERY CHARGERS

TJ1051

FEATURES

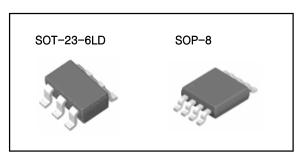
- CONSTANT VOLTAGE AND CONSTANT CURRENT CONTROL
- LOW VOLTAGE OPERATION
- PRECISION INTERNAL COMPONENT COUNT
- CURRENT SINK OUTPUT STAGE
- EASY COMPENSATION
- LOW AC MAINS VOLTAGE REJECTION

DESCRIPTION

TJ1051 is a highly integrated solution for SMPS applications requiring constant voltage and constant current mode.

TJ1051 integrates one voltage reference, two operational amplifiers (with ORed ouputs - common collectors), and a current sensing circuit.

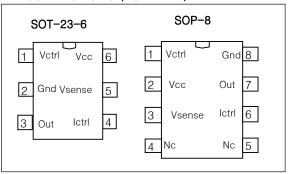
The voltage reference combined with one operational amplifiers makes it an ideal voltage controller, and the other low voltage reference combined with the other operational amplifier makes it an ideal current limiter for output low side current sensing.

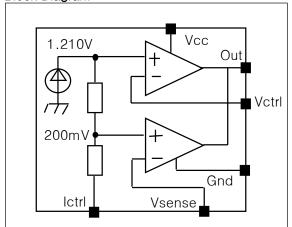

The current threshold is fixed and precise.

The only external components are:

- A resistor brideg to be connected to the output of the power supply (adaptor, battery charger) to set the voltage regulation by dividing the desired output voltage to match the internal voltage reference value.
- A sense resistor having a value and allowable dissipation power which need to be chosen according to the internal vlotage threshold.
- Optional compensation components (R and C).

APPLICATIONS


- BATTERY CHARGERS
- ADAPTERS


ORDERING INFORMATION

<u> </u>					
Device	Marking Packag				
TJ1051CL	1051	SOT-23-6LD			
TJ1051CD	TJ1051	SOP-8			

PIN CONNECTIONS (TOP VIEW)

Block Diagram

TJ1051, is ideal for smallest package available, is ideal for space shrinked applications such as battery chargers and adaptors.

PIN DESCRIPTION

SOT23-6 Pinout

Name	Pin#	Type	Function
Vcc	6	Power Supply	Positive Power Supply Line
GND	2	Power Supply	Ground Line. 0V Reference For All Voltages
Vctrl	1	Analog Input	Input Pin of the Voltge Control Loop
lctrl	4	Analog Input	Input Pin of the Current Control Loop
Out	3	Current Shink Output	Output Pin. Sinking Current Only
Vsense	5	Analog Input	Input Pin of the Current Control Loop

SOP-8 Pinout

Name	Pin#	Type	Function
Vcc	2	Power Supply	Positive Power Supply Line
GND	8	Power Supply	Ground Line. 0V Reference For All Voltages
Vctrl	1	Analog Input	Input Pin of the Voltge Control Loop
lctrl	6	Analog Input	Input Pin of the Current Control Loop
Out	7	Current Shink Output	Output Pin. Sinking Current Only
Vsense	3	Analog Input	Input Pin of the Current Control Loop
Nc	5		
Nc	4		

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vcc	DC Supply Voltage	14	V
Vi	Input Voltage	-0.3 to Vcc	V
Top	Operating Free Air Temperature Range	0 to 85	${\mathbb C}$
Τi	Maximum Junction Temperature	150	$^{\circ}$

OPERATION CONDITIONS

Symbol	Parameter	Value	Unit
Vcc	DC Supply Conditions	2.5 to 12	V

ELECTRICAL CHARACTERISTICS

Tamb = 25° C and Vcc = +5V (unless otherwise specified)

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
Total Current Consumption						
laa	Total Supply Current - not taking the	Tamb		1.1	_	2 mA
lcc	output sinking current into account	0 < Tamb < 85 ℃		1.2	2	mA
Voltage Co	ontrol Loop					
Gmv	Transconduction Gain (Vctrl). Sink	Tamb	1	3.5		mA/mV
GIIIV	Current Only ¹⁾	0 < Tamb < 85 ℃		2.5		
Vref	Voltage Control Loop Referenc ²⁾	Tamb	1.198	1.21	1.222	V
VICI		0 < Tamb < 85 ℃	1.186	1,21	1.234	
libv	Input Bias Current (Vctrl)	Tamb		50		nA
IIDV		0 < Tamb < 85 ℃		100		117 (
Current Co	ontrol Loop					
Gmi	Transconduction Gain (Ictrl). Sink	Tamb	1.5	7		mA/mV
GIIII	Current Only ³⁾	0 < Tamb < 85 ℃	1.5	1		III/A/IIIV
\/00000	Current Control Loop Referenci ⁴⁾	lout =2.5mA Tamb	196	200	204	mV
V 3 6 1 1 3 6		0 < Tamb < 85 ℃	192		208	
libi	Current out of pin lctrl at - 200mV	Tamb		25 50		μA
IIDI		0 < Tamb < 85 ℃				
Output Sta	ge					
Vol	Low output voltage at 10 mA sinking	Tamb		200		mV
	Current	0 < Tamb < 85 ℃		200		1110
los	Output Short Circuit Current. Output to	Tamb		27 50 1		mA
	Vcc. Sink Current Only	0 < Tamb < 85 ℃		35	- 50	111/ \

- 1) If the voltage on Vctrl (the negative input of the amplifier) is higher than the positive amplifier input (Vref=1.210V), and it is increased by 1mV, the sinking current at the output OUT will be increased by 3.5mA.
- 2) The internal Voltage Reference is set at 1.210V (bandgap reference). The voltage control loop precision takes into account the cumulative effects of the internal voltage reference deviation as well as the input offset voltage of the transconductance operational amplifier. The internal Voltage Reference is fixed by bandgap, and trimmed to 0.5% accuracy room temperature.
- 3) When the positive input at lctrl is lower than 200mV, and the voltage is decreased by 1mV, the sinking current at the output OUT will be increased by 7mA.
- 4) The internal current sense threshold is set to 200mV. The current control loop precision takes into account the cumulative effects of the internal voltage reference deviation as well as the input offset voltage of the transconduction operational amplifier.

Downloaded from Elcodis.com electronic components distributor

OUT Top primary TJ1051 R2 Rout Rvc Cvc1 Vcc 1.210V Out A Γ Cvc2 22pF Load Cic1 200mV 2.2nF Ric1 Gnd 22K **Ictrl** Vsense Ric2 500 Vsense OUT Rsense ΙL

Figure 1: Typical Adaptor or Battery Charger Application Using TJ1051

In the avove application schematic, the TJ1051 is used on the secondary side of a flyback adapte (or battary charger) to provide an accurate control of voltage and current. The above feedback loc is made with an optocoupler.