20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.

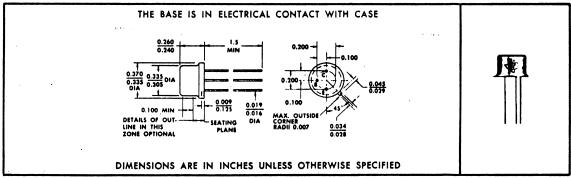
TELEPHONE: (201) 376-2922

(212) 227-6005

FAX: (201) 376-8960

N-P-N TYPES 2N1302, 2N1304, 2N1306, AND 2N1308 ALLOY-JUNCTION GERMANIUM TRANSISTORS

High-Frequency Transistors for Computer and Switching Applications


environmental tests

To ensure maximum integrity, stability, and long life, finished devices are subjected to the following tests and conditions prior to thorough testing for rigid adherence to specified characteristics.

- All devices receive a 100°C stabilization bake for 100 hours.
- The hermetic seal for all devices is verified by helium leak testing.
- Production samples are life tested at regularly scheduled periods to ensure maximum reliability under extreme operating conditions.
- Continuous Quality Control checks on in-process assembly are maintained.

*mechanical data

The transistors are in a JEDEC TO-5 hermetically sealed welded package with glass to metal seal between case and leads. Approximate weight is one gram.

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

in the second	2N1302, 2N1304 2N1303, 2N1305, 2N1306, 2N1308 2N1307, 2N1309
Collector-Base Voltage	
Emitter-Base Voltage	25 v
Collector Current	🚤300 ma
Total Device Dissipation at (or below) 25°C Free-Air Temperature	150 mw
Operating Collector Junction Temperature	
Storage Temperature Range	——— —65°C to 100°C

Quality Semi-Conductors

TYPES 2N1302, 2N1304, 2N1306, AND 2N1308 N-P-N ALLOY-JUNCTION GERMANIUM TRANSISTORS

electrical characteristics at 25°C free-air temperature

	PARAMETER	ETER TEST CONDITIONS		2N1302				2N1304	1	:	2N1304	,	:	UNIT		
	PARAMETER			MIN	TYP MAX		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
BYCBO	Collector-Base Breakdown Voltage	I _C = 100 με,	I _E = 0	25	-	-	25	-	-	25	-	1	25	-	-	,
BVERO	Emitter-Base Breakdown Voltage	$I_g=100~\mu e$,	I _C = 0	25	-	-	25	-	_	25	-	-	25	-	-	,
*V _{PT}	Punch Through Voltage†	V _{EBf1} = 1 v		25	-	-	20	-	-	15	_	-	15	-	-	٧
*Icso	Collector Cutoff Current	$V_{CB} = 25 v$	I _E = 0	-	3	. 6.	-	3	6	-	3	6	-	3	6	μ
*IEBO	Emitter Cutoff Current	$V_{EB}=25 v$,	I _C = 0	-	2	6	-	2	6	-	2	6	-	2	6	μ
*h _{FE} .	Static Forward Current	V _{CE} = 1 v,	I _C = 10 mg	20	100	-	40	115	200	60	130	300	80	160	-	T -
	Transfer Ratio	V _{CE} = 0.35 v,	I _C = 200 me	10	100	-	15	110	_	20	125	-	20	140	-	T -
**	Base-Emitter Voltage	I ₈ = 0.5 ma,	I _C = 10 me	0.15	0.22	0.40	0.15	0.22	0.35	0.15	0.22	0.35	0.15	0.22	0.35	٧
*YCE(set)	Collector-Emitter Saturation Voltage	I _B = 0.5 ma,	I _C = 10 ms	-	0.07	0.20	-	-	_	-	-	_	-	-	-	•
		1 ₈ = 0.25 ma,	I _C = 10 me	-	-	Γ-	_	0.07	0.20	-	_	-	-	T-	-	
		I _B = 0.17 ma,	I _C = 10 ms	_	_	-	-	_	_	-	0.07	0.20	_	_	_	ľ
		I ₈ = 0.13 ma,	I _C = 10 me	_	-	_	_	_	_	-	-	_	_	0.07	0.20	·
h _{ib}	Small-Signal Common-Base Input Impedance	$V_{CB} = 5 v,$ $f = 1 kc$	I _E = -1 ma	-	28	-	-	28	-	-	28	-	-	28	-	*
h _{rb}	Small-Signal Common-Base Reverse Voltage Transfer Ratio	V _{CB} = 5 v, f = 1 kc	I _E = -1 me	-	5 x 10-4	-	_	5 x 10-4	-	-	5 x 10-4	-	-	5 x 10 ⁻⁴	-	Ι-
h _{ob}	Small-Signal Common-Base Output Admittance	$V_{CB} = 5 v$, $f = 1 kc$	I _E = -1 ma	-	0.34	-	-	0.34	-	-	0.34	-	-	0.34	-	μπ
hje	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} = 5 v, f = 1 kc	I _C = 1 ma	-	105	-	-	120	_	-	135	-	-	170	-	<u> </u>
*fhfb	Common-Base Alpha- Cutoff Frequency	V _{C8} = 5 v,	I _E = - 1 ma	3	12	_	5	14	-	10	16	-	15	20	-	•
*(_{ob}	Common-Base Open Circuit Output Capacitance	V _{CB} = 5 v, f = 1 mc	I _E = 0		14	20	-	14	20	-	14	20	_	14	20	Ŀ
Cip	Common-Base Open-Circuit Input Capacitance	V _{EB} = 5 v, f = 1 mc	l _c = 0	-	13	-	-	13	-	-	13	-	-	13	-	Γ,

 $[\]dagger V_{PT}$ is determined by measuring the emitter-base floating potential V_{EBfl} . The collector-base voltage, V_{CB} , is increased until $V_{EBfl}=1$ volt; this value of $V_{CB}=(V_{PT}+1 \text{ v})$.

switching characteristics at 25°C free-air temperature

PARAMETER		TEST CONDITIONS ††	2N1302			2N1304			2N1306			2N1308			UNIT
			MIN	TYP	MAX										
† _d	Delay Time	$I_{\rm C} = 10$ ma, $I_{\rm B(1)} = 1.3$ ma $I_{\rm B(2)} = -0.7$ ma, $Y_{\rm BE~(off)} = -0.8$ v $R_{\rm L} = 1$ k Ω (See Fig. 1)	-	0.07	_	_	0.07	_	_	0.06	_	_	0.06	-	μιοι
1,	Rise Time		-	0.20	_	_	0.20	-	_	0.18	_	_	0.15	_	μιος
1,	Storage Time		_	0.70	-	-	0.70	_	_	0.64	-	_	0.64	-	μια
1,	Fall Time		-	0.40	-	-	0.40	-	_	0.36	_	_	0.34	_	μιος
Qsb	Stored Base Charge	$I_{B(i)} = 1$ ma, $I_C = 10$ ma (See Fig. 2)	-	800	-	1	760	-	_	720	_	_	680	_	pcb

^{††}Veltage and current values shown are nominal; exact values vary slightly with device parameters.

operating characteristics at 25°C free-air temperature

PARAMETER	TEST CONDITIONS	2N1302			2N1304			2	N 1 306		2N1308			UNIT
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
NF Spot Noise Figure	$V_{CB} = 5 \text{ V}$ $I_B = -1 \text{ me}$ $f = 1 \text{ kc}, \qquad R_G = 1 \text{ k } \Omega$	1	4	1	ı	•	-	-	3	-	-	3	-	4