Semicustom

CMOS

Standard cell

CS81 Series

■ DESCRIPTION

The CS81 series 0.18 μ m CMOS standard cell is a line of highly integrated CMOS ASICs featuring high speed and low power consumption.

This series incorporates up to 40 million gates which have a gate delay time of 11 ps, resulting in both integration and speed about three times higher than conventional products.

In addition, CS81 can operate at a power-supply voltage of down to 1.1 V, substantially reducing power consumption.

■ FEATURES

- Technology : 0.18 μm silicon-gate CMOS, 3- to 6-layer wiring capable of integrating a mixture of highspeed processes and cells on a single chip (under development)
- Supply voltage : $+1.8 \text{ V} \pm 0.15 \text{ V}$ (normal) to $+1.1 \text{ V} \pm 0.1 \text{ V}$
- Junction temperature range : -40 to +125 °C
- Gate delay time : $t_{pd} = 11$ ps (1.8 V, inverter, F/O = 1)
- Gate power consumption : Pd = 5 nW/MHz/BC (1.1 V, 2-NAND, F/O = 1)
- Support for high speed (62.2 Mbps to 780 Mbps, 2.5 Gbps to 3.125 Gbps) interface macros for transmission
- Output buffer cells with noise reduction circuits
- Inputs with on-chip input pull-up/pull-down resistors (33 kΩ typical) and bidirectional buffer cells
- Buffer cells dedicated to crystal oscillators
- Special interfaces (P-CML, LVDS, PCI, AGP, USB, SDRAM-I/F, SSTL, and others. including those under development)
- IP macros (CPU (FR, ARM7, ARM9), DSP, PCI, IEEE1394, USB, IrDA, PLL, ADC, DAC, and others. including those under development)
- Capable of incorporating compiled cells (RAM/ROM/multiplier, and others.)
- · Configurable internal bus circuits
- Advanced hardware/software co-design environment
- Short-term development using a timing driven layout tool
- Support for static timing sign-off

Dramatically reducing the time for generating test vectors for timing verification and the simulation time

(Continued)

(Continued)

- Hierarchical design environment for supporting large-scale circuits
- Simulation (before layout) considering the input slew rate and detailed RC delay calculation (after layout), supporting development with minimized timing trouble after trial manufacture
- Support for memory (RAM/ROM) SCAN
- Support for memory (RAM) BIST
- Support for boundary SCAN
- · Support for path delay test
- A variety of package options (TQFP, HQFP, EBGA, FBGA, TAB-BGA, FCBGA, LQFP)

■ MACRO LIBRARY (Including macros being prepared)

1. Logic cells (about 400 types)

Adder

Decoder

• AND-OR Inverter

• Non-SCAN Flip Flop

Clock Buffer

Inverter

Latch

Buffer

• NAND

• OR-AND

AND

• OR-AND Inverter

• NOR

OR

• SCAN Flip Flop

Selector

ENOR

BUS Driver

AND-OR

• EOR

Others

2. IP macros

CPU/DSP	FR, SPARClite, ARM7, ARM9, Communications DSP, DSP for AV and others
High speed interface macros	622 Mbps to 780 Mbps, 2.5 Gbps to 3.125 Gbps
Interface macro	PCI, IEEE1394, USB, IrDA, and others
Multimedia processing macros	JPEG, MPEG, and others
Mixed signal macros	ADC, DAC, OPAMP, and others
Compiled macros	RAM, ROM, multiplier, adder, multiplier-accumulator, and others
PLL	Analog PLL, digital PLL

3. Special I/O interface macros

- T-LVTTL
- SSTL
- HSTL
- P-CML

- LVDS
- PCI
- AGP
- USB

- IEEE1394
- SDRAM-I/F

■ COMPILED CELLS

Compiled cells are macro cells which are automatically generated with the bit/word configuration specified. The CS81 series has the following types of compiled cells. (Note that each macro is different in word/bit range depending on the column type.)

1. Clock synchronous single-port RAM (1 address : 1 RW)

• High density type/Partial write type

Column type	Memory capacity	Word range	Bit range	Unit
4	16 to 72 K	16 to 1 K	1 to 72	bit
16	64 to 72 K	64 to 4 K	1 to 18	bit

High speed type

Column type	Memory capacity	Word range	Bit range	Unit
8	256 to 144 K	64 to 2 K	4 to 72	bit

Large scale partial write type

Column type	Memory capacity	Word range Bit range		Unit
16	24.5 K to 1179 K	4 K to 16 K	6 to 72	bit

2. Clock synchronous dual-port RAM (2 addresses : 1 RW, 1 R)

• High density type/Partial write type

Column type	Memory capacity	Word range	Bit range	Unit
4	16 to 72 K	16 to 1 K	1 to 72	bit
16	64 to 72 K	64 to 4 K	1 to 18	bit

3. Clock synchronous register file (3 addresses : 1 W, 2 R)

Column type	Memory capacity	Word range	Bit range	Unit
1	4608	4 to 64	1 to 72	bit

4. Clock synchronous register file (4 addresses : 2 W, 2 R)

Column type	Memory capacity	Word range	Bit range	Unit
1	4608	4 to 64	1 to 72	bit

5. Clock synchronous ROM (1 addresses, 1 R)

Column type	Memory capacity	Word range	Bit range	Unit
16	256 to 512 K	128 to 4 K	2 to 128	bit

6. Clock synchronous delay line memory (2 addresses : 1 W, 1 R)

Column type	Memory capacity	Word range	Bit range	Unit
8	256 to 32 K	32 to 1 K	8 to 32	bit
16	384 to 32 K	64 to 2 K	6 to 16	bit
32	512 to 32 K	128 to 4 K	4 to 8	bit

■ ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rat	ting	Unit	
Farameter	Syllibol	Min	Max	Oilit	
Supply voltage*1	V _{DD}	-0.5	+2.5*2	V	
Supply voltage	טט ע	-0.5	+4.0*3	V	
Input voltage*1	Vı	-0.5	$V_{DD}+0.5 \ (\le 2.5 \ V)^{*2}$	V	
Imput voitage	VI -0.5		$V_{DD}+0.5 (\le 4.0 \text{ V}) *3$	V	
Output voltage*1	Vo	-0.5	$V_{DD}+0.5 \ (\le 2.5 \ V)^{*2}$	V	
Output voltage*1	V O	-0.5	$V_{DD}+0.5 (\le 4.0 \text{ V})^{*3}$	'	
Storage temperature	Tst	-55	+125	°C	
Junction temperature	Tj	-40	+125	°C	
Output current*4	lo	_	±4	mA	
Input signal transmitting rate	Rı	_	Clock input*5 : 200 Normal input : 100	Mbps*6	
Output signal transmitting rate	Ro	_	100	Mbps*6	
Output load capacitance	Со	_	3000/Ro	pF	
Supply pin current	lo	_	*7	mA	

^{*1 :} Vss = 0 V

^{*7 :} Supply pin current for one VDD/GND pin

Frame	Source type	Maximum o	Number of	
France	Source type	Standard source	Additional source	layer
	VDDE, VDDI, VDD, VSS	68	68	4, 5
YS, YI	VDDE	39	39	3
	VDDI, VDD, VSS	68	68	3
В	VDDE, VDDI, VDD, VSS	43	30	_

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

^{*2 :} Internal gate part in case of single power supply or dual power supply

^{*3:} I/O part in case 3.3 V I/F or 2.5 V I/F is used by dual power supply.

^{*4 :} DC current which continues more than 10 ms, or average DC current

^{*5 :} in case of I/O cell for clock input

^{*6 :} bps = bit per second

■ RECOMMENDED OPERATING CONDITIONS

• Single power supply (V $_{DD} = +1.8~V \pm 0.15~V)$

(Vss = 0 V)

Parameter	Symbol	Value			Unit
Faranielei	Syllibol	Min	Тур	Max	Oilit
Supply voltage (1.8 V supply voltage)	V _{DD}	1.65	1.8	1.95	V
"H" level input voltage (1.8 V CMOS)	Vıн	$V_{\text{DD}} \times 0.65$	_	V _{DD} + 0.3	V
"L" level input voltage (1.8 V CMOS)	VIL	-0.3	_	$V_{\text{DD}} \times 0.35$	V
Junction temperature	Tj	-40	_	+125	°C

• Dual power supply (VDDE = +3.3 V \pm 0.3 V, VDDI = +1.8 V \pm 0.15 V)

(Vss = 0 V)

Parameter		Symbol		Unit				
Falai	Parameter		Min	Тур	Max	Oilit		
Supply voltage	1.8 V supply voltage		1.65	1.8	1.95	V		
Supply voltage	3.3 V supply voltage	V _{DDE}	3.0	3.3	3.6	V		
"H" lovel input voltage	1.8 V CMOS		1.8 V CMOS	VIH	$V_{\text{DDI}} \times 0.65$	_	V _{DDI} + 0.3	V
"H" level input voltage	3.3 V CMOS	VIH	2.0	_	V _{DDE} + 0.3] '		
"I " lovel input voltage	1.8 V CMOS	V.	-0.3	_	$V_{\text{DDI}} imes 0.35$	V		
"L" level input voltage	3.3 V CMOS	VıL	-0.3	_	+0.8			
Junction temperature		Tj	-40	_	+125	°C		

• Dual power supply (VDDE = +3.3 V \pm 0.3 V, VDDI = +1.5 V \pm 0.1 V / +1.1 V \pm 0.1 V)

(Vss = 0 V)

Parameter		Symbol		Unit		
Faiai	Parameter		Min	Тур	Max	Offic
		V _{DDE}	3.0	3.3	3.6	V
Supply voltage		V _{DDI}	1.0	1.1	1.2	V
			1.4	1.5	1.6	V
"H" level input voltage	3.3 V CMOS	VIH	2.0	_	V _{DDE} + 0.3	V
"L" level input voltage	3.3 V CMOS	VIL	-0.3	_	+0.8	V
Junction temperature		Tj	-40	_	+125	°C

• Dual power supply ($V_{DDE} = +2.5 \text{ V} \pm 0.2 \text{ V}$, $V_{DDI} = +1.8 \text{ V} \pm 0.15 \text{ V}$)

(Vss = 0 V)

Parameter		Symbol		Unit		
Palai	Parameter		Min	Тур	Max	Offic
Supply voltage		VDDE	2.3	2.5	2.7	٧
Supply Voltage	uppry voltage		1.65	1.8	1.95	V
(1) 12 1 1 1 1 1 1	1.8 V CMOS	Vıн	$V_{\text{DDI}} \times 0.65$	_	V _{DDI} + 0.3	V
"H" level input voltage	2.5 V CMOS		1.7	_	V _{DDE} + 0.3	V
"I " lovel input veltage	1.8 V CMOS	VıL	-0.3	_	$V_{\text{DDI}} \times 0.35$	V
"L" level input voltage	2.5 V CMOS		-0.3	_	+0.7	V
Junction temperature		Tj	-40	_	+125	°C

• Dual power supply (VDDE = ± 2.5 V ± 0.2 V, VDDI = ± 1.5 V ± 0.1 V ± 1.1 V ± 0.1 V)

(Vss = 0 V)

Parameter		Cumbal		llmit		
		Symbol	Min	Тур	Max	Unit
		V _{DDE}	2.3	2.5	2.7	V
Supply voltage		V _{DDI}	1.0	1.1	1.2	V
			1.4	1.5	1.6	V
"H" level input voltage	2.5 V CMOS	VIH	1.7	_	V _{DDE} + 0.3	V
"L" level input voltage	2.5 V CMOS	VıL	-0.3	_	+0.7	V
Junction temperature		Tj	-40	_	+125	°C

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

> Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

> No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

■ ELECTRICAL CHARACTERISTICS

1. DC characteristics

• Signal power supply : $V_{\text{DD}} = 1.8 \text{ V}$

(V_{DD} = 1.8 V \pm 0.15 V, V_{SS} = 0 V, T_j = -40 °C to +125 °C)

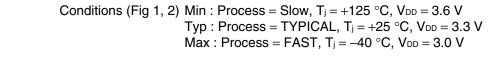
Parameter	Symbol	Conditions	Value			Unit
Parameter	Syllibol	Conditions	Min	Тур	Max	Ollit
Supply Current	IDDS	_	_		*	mA
"H" level output voltage	Vон	Іон = -100 μΑ	V _{DD} - 0.2		V _{DD}	V
"L" level output voltage	Vol	$I_{OL} = +100 \mu A$	0		0.2	V
Input leakage current	lι	_	_		±5	μΑ
Pull up/Pull down resistance	R₽	Pull up $V_{IL} = 0$ Pull down $V_{IH} = V_{DD}$	_	18	_	kΩ

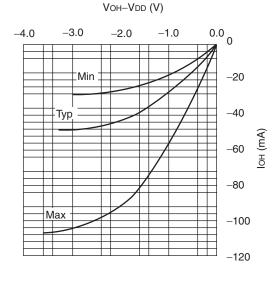
^{*:} For details of YS, YI, B frame of CS81 series, contact Fujitsu.

 $\begin{array}{l} \bullet \ \ \text{Dual power supply}: \ V_{\text{DDE}} = \textbf{3.3 V}, \ V_{\text{DDI}} = \textbf{1.8 V} \\ (\text{V}_{\text{DDE}} = 3.3 \ \text{V} \pm 0.3 \ \text{V}, \ \text{V}_{\text{DDI}} = 1.8 \ \text{V} \pm 0.15 \ \text{V} \ / \ 1.5 \ \text{V} \pm 0.1 \ \text{V} \ / \ 1.1 \ \text{V} \pm 0.1 \ \text{V}, \ \text{V}_{\text{SS}} = 0 \ \text{V}, \ T_{j} = -40 \ ^{\circ}\text{C} \ \text{to} \ +125 \ ^{\circ}\text{C}) \end{array}$

Donomotor	Cumbal	Conditions		Value		Unit
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Supply Current	IDDS	_	_	_	*1	mA
"H" level output voltage	V он4	3.3 V Output Ioн = -100 μA	V _{DDE} - 0.2	_	V _{DDE}	V
n lever output voltage	V _{OH2}	1.8 V Output Ioн = -100 μA	V _{DDI} – 0.2	_	V _{DDI}	V
"L" level output voltage	V _{OL4}	3.3 V Output IoL = 100 μA	0	_	0.2	V
L level output voltage	V _{OL2}	1.8 V Output IoL = 100 μA	0	_	0.2	V
"H" level output V-I		3.3 V VDDE = 3.3 V±0.3 V		*2		_
characteristics	_	1.8 V V _{DDI} = 1.8 V±0.15 V		_		_
"L" level output V-I		3.3 V VDDE = 3.3 V±0.3 V	*2			_
characteristics	_	1.8 V V _{DDI} = 1.8 V±0.15 V	-			_
Input leakage current	l.	_	_		±5	μΑ
Pull up/Pull down resistance	_	1.8 V Pull up V _{IL} =0 Pull down V _{IH} =V _{DDI}	_	18	_	- kΩ
	R₽	3.3 V Pull up V _{IL} =0 Pull down V _{IH} =V _{DDE}	10	33	80	- K52

^{*1 :} For details of YS, YI, B frame of CS81 series, contact Fujitsu.


^{*2 :} Refer to the Fig.1 to 2.


• Dual power supply : $V_{DDE} = 2.5 \text{ V}$, $V_{DDI} = 1.8 \text{ V} / 1.5 \text{ V} / 1.1 \text{ V}$ ($V_{DDE} = 2.5 \text{ V} \pm 0.2 \text{ V}$, $V_{DDI} = 1.8 \text{ V} \pm 0.15 \text{ V} / 1.5 \text{ V} \pm 0.1 \text{ V} / 1.1 \text{ V} \pm 0.1 \text{ V}$, $V_{SS} = 0 \text{ V}$, $T_j = -40 \text{ °C to } +125 \text{ °C}$)

Parameter	Symbol	Conditions	Value			Unit
Parameter	Symbol	Conditions	Min	Тур	Max	Ullit
Supply Current	IDDS	_	_	_	*	mA
"H" level output voltage	Vонз	2.5 V Output Io _H = -100 μA	V _{DDE} - 0.2	_	VDDE	V
n lever output voltage	V _{OH2}	1.8 V Output Io _H = -100 μA	V _{DDI} - 0.2	_	V _{DDI}	V
"L" level output voltage	Vol3	2.5 V Output IoL = 100 μA	0	_	0.2	V
L level output voltage	V _{OL2}	1.8 V Output IoL = 100 μA	0	_	0.2	V
Input leakage current	l.	_	_	_	±5	μΑ
Pull up/Pull down	R₽	2.5 V Pull up V _{IL} =0 Pull down V _{IH} =V _{DDE}	_	25	_	kΩ
resistance	ΠP	1.8 V Pull up V _{IL} =0 Pull down V _{IH} =V _{DDI}	_	18	_	- K22

^{*:} For details of YS, YI, B frame of CS81 series, contact Fujitsu.

• V-I Characteristics

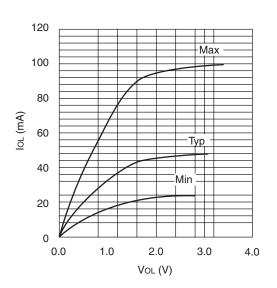
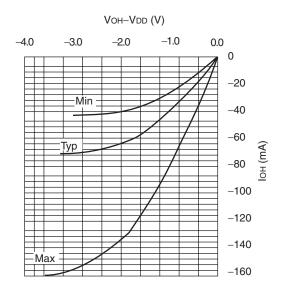



Fig.1 V-I characteristics (3.3 V normal I/O L, M type)

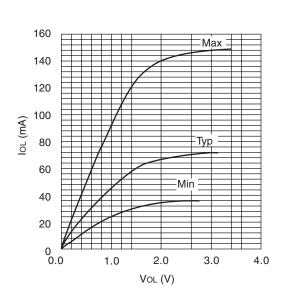


Fig.2 V-I characteristics (3.3 V normal I/O H, V type)

2. AC characteristics

 $(V_{DD} = 1.8 \text{ V} \pm 0.15 \text{ V}, V_{SS} = 0 \text{ V}, T_j = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C})$

Parameter	Symbol	Rating				
Farameter	Syllibol	Min	Тур	Max*	Unit	
Delay time	t _{pd} *1	typ*2 × tmin*3	$typ^{*2} \times ttyp^{*3}$	typ*2 × tmax*3	ns	

^{*1 :} Delay time = propagation delay time, enable time, disable time

^{*3:} Measurement conditions.

Measurement condition	tmin	ttyp	tmax
$V_{DD} = 1.8 \text{ V} \pm 0.15 \text{ V}, \text{ V}_{SS} = 0 \text{ V}, \text{ T}_{j} = -40 \text{ °C to } +125 \text{ °C}$	0.64	1.00	1.58
$V_{DD} = 1.5 \text{ V} \pm 0.10 \text{ V}, \text{ V}_{SS} = 0 \text{ V}, \text{ T}_{j} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$	0.83	1.31	2.05
$V_{DD} = 1.1 \text{ V} \pm 0.10 \text{ V}, \text{ V}_{SS} = 0 \text{ V}, \text{ T}_{j} = -40 \text{ °C to } +125 \text{ °C}$	1.37	2.45	4.88

Note: tpd max is calculated according to the maximum junction temperature (Ti).

■ INPUT/OUTPUT PIN CAPACITANCE

 $(T_i = +25 \, {}^{\circ}C, \, V_{DD} = V_I = 0 \, V, \, f = 1 \, MHz)$

Parameter	Symbol	Requirements	Unit
Input pin	Cin	Max 16	pF
Output pin	Соит	Max 16	pF
I/O pin	Cı/o	Max 16	pF

Note: Capacitance varies according to the package and the location of the pin.

■ DESIGN METHOD

SCCAD2 is the standard cell integrated design environment providing three major functions, enabling high-quality, large-scale system LSIs to be developed in a shorter period of time. They include: the timing driven layout function for automatic placement/routing based on timing constraints to prevent timing problems after layout, the function for shortening the development cycle time by dividing a large-scale circuit and performing simultaneous logical/physical design of multiple circuits, and the function for automatically generating power/ signal wiring patterns while evaluating the supply voltage drop, signal noise, delay penalty, and crosstalk (Contact your nearest Fujitsu office for more information and availability).

^{*2: &}quot;typ" is calculated based on the cell specifications.

■ PACKAGES

The table below lists the package types available.

Consult Fujitsu for the combination of each package and the time of availability.

Package	Pin count	Material
	304	Plastic
	352	Plastic
TAB-BGA	480	Plastic
TAB-BUA	560	Plastic
	660	Plastic
	720	Plastic
	576	Plastic
EBGA	660	Plastic
	672	Plastic
	208	Plastic
HQFP	240	Plastic
I NOTE	256	Plastic
	304	Plastic
TQFP	100	Plastic
IQFF	120	Plastic
	144	Plastic
LQFP	176	Plastic
	208	Plastic
FBGA	288	Plastic
	1089	Plastic
	1225	Plastic
FCBGA	1369	Plastic
FODGA	1681	Plastic
	1849	Plastic
	2116	Plastic

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

Edited Business Promotion Dept.