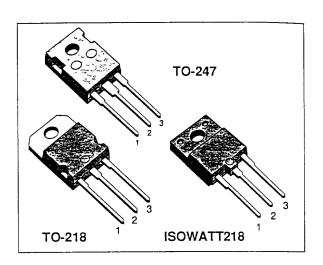
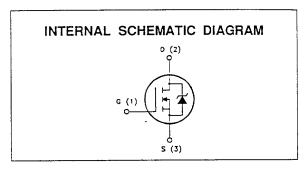


STH33N20/FI STW33N20


N - CHANNEL ENHANCEMENT MODE POWER MOS TRANSISTOR


TYPE	V _{DSS}	R _{DS(on)}	lo
STH33N20	200 V	< 0.085 Ω	33 A
STH33N20FI	200 V	< 0.085 Ω	20 A
STW33N20	200 V	< 0.085 Ω	33 A

- TYPICAL $R_{DS(on)} = 0.073 \Omega$
- AVALANCHE RUGGED TECHNOLOGY
- 100% AVALANCHE TESTED
- REPETITIVE AVALANCHE DATA AT 100°C
- APPLICATION ORIENTED CHARACTERIZATION

APPLICATIONS

- HIGH CURRENT, HIGH SPEED SWITCHING
- UNINTERRUPTIBLE POWER SUPPLY (UPS)
- MOTOR CONTROL, AUDIO AMPLIFIERS
- INDUSTRIAL ACTUATORS
- DC-DC & DC-AC CONVERTERS FOR TELECOM, INDUSTRIAL AND CONSUMER ENVIRONMENT

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Val	20 12 132 70 0.56 4000	Unit
,		STH/STW33N20	STH33N20FI	
V _{DS}	Drain-source Voltage (V _{GS} = 0)	20	0	V
VDGR	Drain- gate Voltage (R _{GS} = 20 kΩ)	20	0	V
V _{GS}	Gate-source Voltage	± 2	20	V
ΙD	Drain Current (continuous) at T _c = 25 °C	33	20	Α
ΙD	Drain Current (continuous) at T _c = 100 °C	20	12	Α
I _{DM} (•)	Drain Current (pulsed)	132	132	Α
P _{tot}	Total Dissipation at T _c = 25 °C	180	70	W
	Derating Factor	1.44	0.56	W/°C
V _{ISO}	Insulation Withstand Voltage (DC)		4000	V
T _{stg}	Storage Temperature	-65 to	150	°C
T ₁	Max. Operating Junction Temperature	15	0	°C

(•) Pulse width limited by safe operating area

May 1993

STH33N20/FI - STW33N20

THERMAL DATA

			TO-218/TO-247	ISOWATT218	
R _{thj-case}	Thermal Resistance Junction-case	Max	0 69	1 79	°C/W
Rthj-amb Rthc-sink Ti	Thermal Resistance Junction-ambient Thermal Resistance Case-sink Maximum Lead Temperature For Soldering F	Max Typ Purpose	30 0. 30	1	°C/W °C/W °C

AVALANCHE CHARACTERISTICS

Symbol	Parameter	Max Value	Unit
IAR	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T_j max, δ < 1%)	33	А
Eas	Single Pulse Avalanche Energy (starting $T_J = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	150	mJ
EAR	Repetitive Avalanche Energy (pulse width limited by T_j max, $\delta < 1\%$)	40	Lm
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (T _c = 100 °C, pulse width limited by T _j max, δ < 1%)	20	А

ELECTRICAL CHARACTERISTICS ($T_{case} = 25$ $^{\circ}C$ unless otherwise specified) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	I _D = 250 μA V _{GS} = 0	200			٧
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	$V_{DS} = Max Rating$ $V_{DS} = Max Rating x 0 8 T_c = 125 °C$			250 1000	μΑ μΑ
l _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 20 V			± 100	nA

ON (*)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	V _{DS} = V _{GS} I _D = 250 μA	2	3	4	٧
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10V I _D = 16 A V _{GS} = 10V I _D = 16 A T _c = 100°C		0 073	0.085 0.170	Ω
I _{D(on)}	On State Drain Current	V _{DS} > I _{D(on)} x R _{DS(on)max} V _{GS} = 10 V	33			А

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
gfs (*)	Forward Transconductance	$V_{DS} > I_{D(on)} \times R_{DS(on)max}$ $I_D = 16 A$	10	22		S
C ₁₅₈ C ₀₅₈ C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = 25 V f = 1 MHz V _{GS} = 0		2800 600 190	3600 800 250	pF pF pF

2/7

SGS-THOMSON MICROELECTRONICS

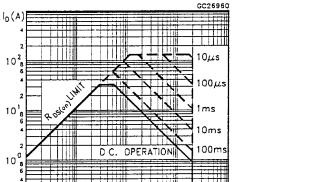
454

ELECTRICAL CHARACTERISTICS (continued)

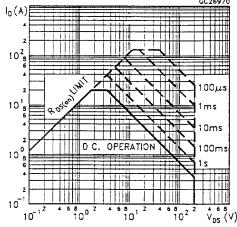
SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Time Rise Time	$V_{DD} = 95 \text{ V}$ $I_D = 16 \text{ A}$ $R_G = 4.7 \Omega$ $V_{GS} = 10 \text{ V}$ (see test circuit, figure 3)		25 65	40 95	ns ns
(dı/dt) _{on}	Turn-on Current Slope	$V_{DD} = 160 \text{ V}$ $I_D = 33 \text{ A}$ $R_G = 50 \Omega$ $V_{GS} = 10 \text{ V}$ (see test circuit, figure 5)		200		A/μs
Qg Qgs Qgd	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V _{DD} = 160 V I _D = 33 A V _{GS} = 10 V		125 15 62	180	nC nC nC

SWITCHING OFF


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{r(Voff)}	Off-voltage Rise Time	V _{DD} = 160 V I _D = 33 A		180	250	ns
tf	Fall Time	$R_G = 50 \Omega$ $V_{GS} = 10 V$		105	150	ns
tc	Cross-over Time	(see test circuit, figure 5)		285	400	ns

SOURCE DRAIN DIODE


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (•)	Source-drain Current Source-drain Current (pulsed)				33 132	A
V _{SD} (*)	Forward On Voltage	I _{SD} = 33 A V _{GS} = 0			1 6	٧
t _{rr}	Reverse Recovery	$I_{SD} = 33 \text{ A}$ di/dt = 100 A/ μ s $V_{DD} = 30 \text{ V}$ $T_{I} = 150 ^{\circ}\text{C}$		450		ns
Q_{rr}	Reverse Recovery	(see test circuit, figure 5)		5		μС
	Charge			00		
IRRM	Reverse Recovery Current			22		A

⁽⁻⁾ Pulsed Pulse duration = 300 μs, duty cycle 1 5 %

Safe Operating Areas For TO-218 and TO-247

Safe Operating Areas For ISOWATT218

SGS-THOMSON

3/7

455

Downloaded from Elcodis.com electronic components distributor

Unit S рF рF рF

°C/W °C/W °C/W ٥С

Unit

mJ

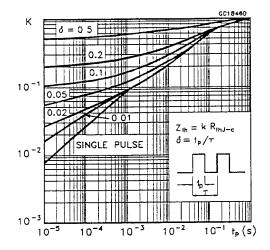
mJ

Α

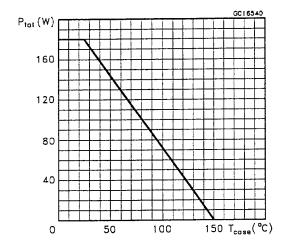
Unit ٧

> μΑ μΑ nΑ

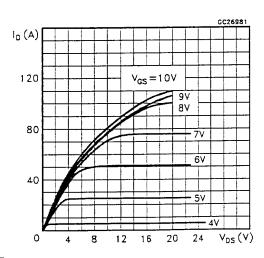
Unit

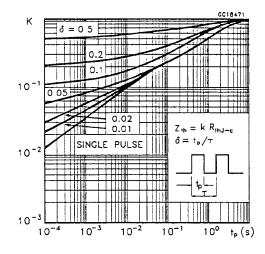

٧

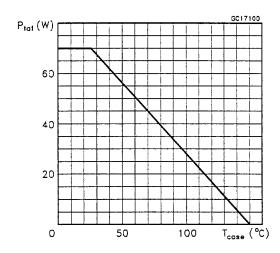
Ω Ω

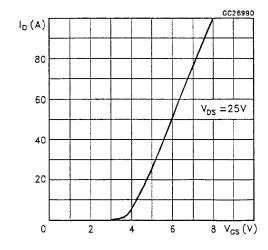

Α

^(•) Pulse width limited by safe operating area


Thermal Impedeance For TO-218 and TO-247


Derating Curve For TO-218 and TO-247

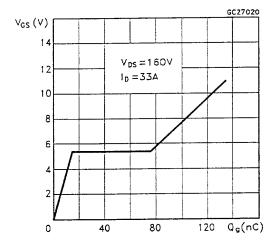

Output Characteristics


Thermal Impedance For ISOWATT218

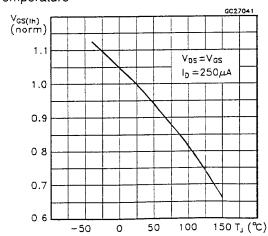
Derating Curve For ISOWATT218

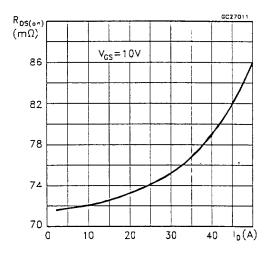
Transfer Characteristics

4/7

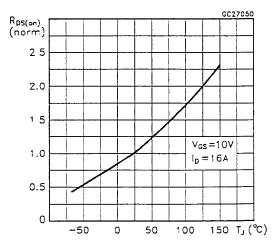

456

SGS-THOMSOI


Transconductance

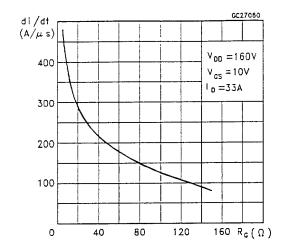

Gate Charge vs Gate-source Voltage

Normalized Gate Threshold Voltage vs Temperature

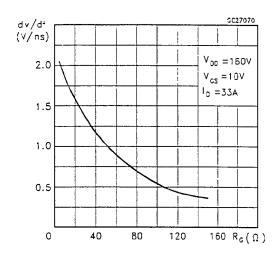

Static Drain-source On Resistance

Capacitance Variations

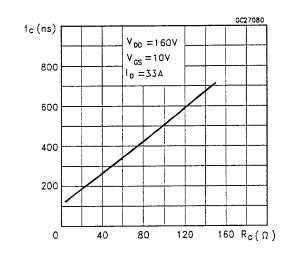
Normalized On Resistance vs Temperature

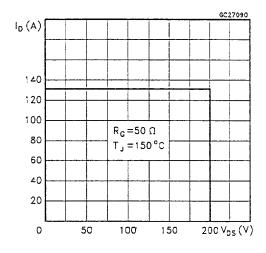


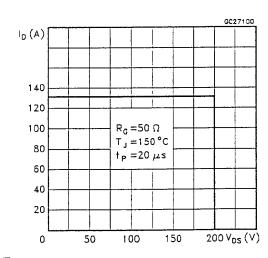
SGS-THOMSON MICROELECTRONICS

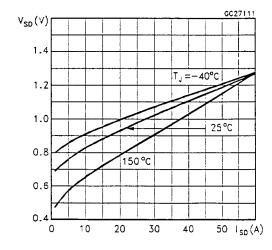

5/7

457


Turn-on Current Slope


Turn-off Drain-source Voltage Slope


Cross-over Time


Switching Safe Operating Area

Accidental Overload Area

Source-drain Diode Forward Characteristics

6/7

458

SGS-THOMSON MICROELECTRONICS

Fig. 1: Unclamped Inductive Load Test Circuits

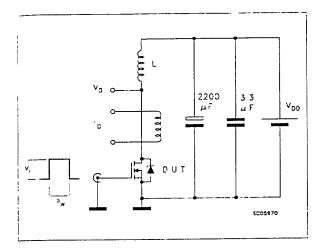
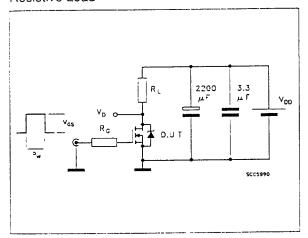



Fig. 3: Switching Times Test Circuits For Resistive Load

Fig. 5: Test Circuit For Inductive Load Switching And Diode Reverse Recovery Time

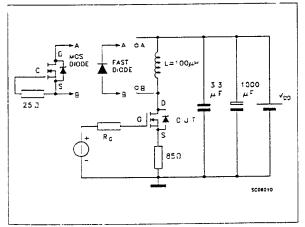


Fig. 2: Unclamped Inductive Waveforms

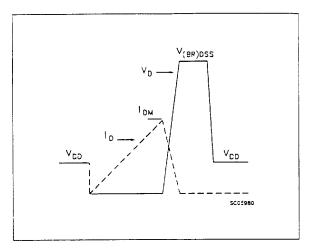
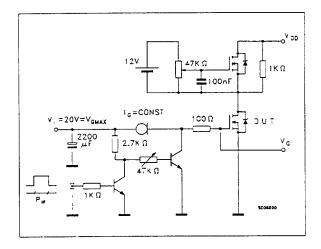



Fig. 4: Gate Charge Test Circuit

