RFM15N12, RFM15N15, RFP15N12, RFP15N15

File Number 1443

N-Channel Enhancement-Mode **Power Field-Effect Transistors**

15 A, 120 V — 150 V

r_{DS}(on): 0.15 Ω

Features:

- SOA is power-dissipation limited
- Nanosecond switching speeds
 Linear transfer characteristics
- High input impedance
- Majority carrier device

N-Channel Enhancement Mode

TERMINAL DESIGNATIONS

RFP15N12

The RFM15N12 and RFM15N15 and the RFP15N12 and RFP15N15* are n-channel enhancement-mode silicon-gate power field-effect transistors designed for applications such as switching regulators, switching converters, motor drivers, relay drivers, and drivers for high-power bipolar switching transistors requiring high speed and low gate-drive power. These types can be operated directly from integrated circuits.

The RFM-types are supplied in the JEDEC TO-204AA steel package and the RFP-types in the JEDEC TO-220AB plastic

*The RFM and RFP series were formerly RCA developmental numbers TA9195 and TA9230, respectively.

MAXIMUM RATINGS, Absolute-Maximum Values (T_c =25°C):

DRAIN-SOURCE VOLTAGE DRAIN-GATE VOLTAGE (R _{GS} =1 MΩ) GATE-SOURCE VOLTAGE	V _{DSS} V _{DGR} - V _{GS}	120 120	150 150	+20	120 120	150 150	V V
DRAIN CURRENT RMS Continuous Pulsed	l _D			- 15 -			- Å
POWER DISSIPATION	Іом			 40		·	- A
@ T _C =25°C	Pt	100	100		75	75	w
Derate above T _c =25°C OPERATING AND STORAGE		0.80	0.80		0.6	0.6	w/°c
TEMPERATURE	T_j , T_{stg}			55 to +150)		- °C

__ Standard Power MOSFETs

RFM15N12, RFM15N15, RFP15N12, RFP15N15

ELECTRICAL CHARACTERISTICS At Case Temperature (T_c) = 25°C unless otherwise specified T-39-11

			LIMITS 7-39-13					
			RFM15N12 RFP15N12		RFM15N15 RFP15N15			
	1	TEST						
CHARACTERISTICS	SYMBOL	CONDITIONS	MIN.	MAX.	MIN.	MAX.	UNITS	
Drain-Source Breakdown Voltage	BV _{DSS}	I _D = 1 mA V _{GS} = 0	120		150	_	٧	
Gate Threshold Voltage	V _{GS(th)}	V _{GS} = V _{DS} I _D = 1 mA	2	4	2	4	v	
Zero Gate Voltage Drain Current	Ipss	$V_{DS} = 100 \text{ V}$ $V_{DS} = 120 \text{ V}$ $T_{C} = 125^{\circ}\text{ C}$ $V_{DS} = 100 \text{ V}$		1 — 50	1 1	1	μΑ	
		V _{DS} = 120 V	-	_	_	50	ĺ	
Gate-Source Leakage Current	l _{GSS}	$V_{GS} = \pm 20 \text{ V}$ $V_{DS} = 0$	_	100	_	100	nA	
Drain-Source On Voltage	V _{DS} (on)*	l _D = 7.5 A V _{GS} = 10 V	_	1.125	_	1.125	- v	
		$I_D = 15 A$ $V_{GS} = 10 V$	_	3	_	3		
Static Drain-Source On Resistance	r _{DS} (on) ^a	· I _D = 7.5 A V _{GS} = 10 V	_	0.15	-	0.15	Ω	
Forward Transconductance	g _{ía} ª	$V_{DS} = 10 \text{ V}$ $I_{D} = 7.5 \text{ A}$	5	-	5	1	mho	
Input Capacitance	Ciss	V _{DS} = 25 V	_	1700	l _	1700		
Output Capacitance	Coss	$V_{gs} = 0 V$	_	750	_	750	ρF	
Reverse Transfer Capacitance	Cras	f = 1MHz		350		350	'	
Turn-On Delay Time	t _d (on)	V _{DD} =75 V	50(typ.)	75	50(typ.)	75		
Rise Time	t _r	I _D = 7.5 A	150(typ.)	225	150(typ.)	225	ns	
Turn-Off Delay Time	t _d (off)	$R_{gen} = R_{gs} = 50 \Omega$	185(typ.)	280	185(typ.)	280	1	
Fall Time	t _f	V _{GS} = 10 V	125(typ.)	190	125(typ.)	190		
Thermal Resistance	R⊕JC	RFM15N12, RFM15N15	_	1.25	_	1.25	°C/W	
Junction-to-Case	11000	RFP15N12, RFP15N15	_	1.67	_	1.67	0,,,,	

^{*}Pulsed: Pulse duration = 300 μ s max., duty cycle = 2%.

SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS

CHARACTERISTIC							
	SYMBOL	TEST CONDITIONS	RFM15N12 RFP15N12		RFM15N15 RFP15N15		UNITS
	į		MIN.	MAX.	MIN.	MAX.	
Diode Forward Voltage	V _{SD}	I _{SD} =7.5 A	_	1.4		1.4	V
Reverse Recovery Time	t _{rr}	I _F =4 A d _{IF} /d _t =100 A/μs	200(typ)		200(typ)		ns

^{*}Pulse Test: Width \leq 300 μ s, duty cycle \leq 2%.

RFM15N12, RFM15N15, RFP15N12, RFP15N15

Fig. 1 — Maximum operating areas for all types.

Power dissipation vs. case temperature derating curve for all types.

Fig. 3 — Typical normalized gate threshold voltage as a function of junction temperature for all types.

Fig. 4 - Normalized drain-to-source on resistance to junction temperature for all types.

Fig. 5 — Typical transfer characteristics for all types.

Standard Power MOSFETS

RFM15N12, RFM15N15, RFP15N12, RFP15N15

Fig. 6 - Normalized switching waveforms for constant gate-current

Fig. 7 — Typical saturation characteristics for all types.

Fig. 8 - Typical drain-to-source on resistance as a function of drain current for all types.

Fig. 9 — Capacitance as a function of drain-to-source voltage for all types.

Fig. 10 - Typical forward transconductance as a function of drain current for all types.

Fig. 11 — Switching Time Test Circuit