# Monolithic Ceramic Capacitors GR\_R6/R7/F5/E4 (X5R/X7R/Y5V/Z5U)

### High Dielectric Constant Type 6.3/16/25/50V





| Part Number | Dimensions (mm) |           |           |             |        |  |  |  |
|-------------|-----------------|-----------|-----------|-------------|--------|--|--|--|
| Part Number | L               | W         | Т         | е           | g min. |  |  |  |
| GRM155      | 1.0 ±0.05       | 0.5 ±0.05 | 0.5 ±0.05 | 0.15 to 0.3 | 0.4    |  |  |  |
| GRM188*     | 1.6 ±0.1        | 0.8 ±0.1  | 0.8 ±0.1  | 0.2 to 0.5  | 0.5    |  |  |  |
| GRM216      |                 | 1.25 ±0.1 | 0.6 ±0.1  | 0.2 to 0.7  | 0.7    |  |  |  |
| GRM219      | 2.0 ±0.1        |           | 0.85 ±0.1 |             |        |  |  |  |
| GRM21B      |                 |           | 1.25 ±0.1 |             |        |  |  |  |
| GRM319      | 2 2 +0 15       | 1.6 ±0.15 | 0.85 ±0.1 |             |        |  |  |  |
| GRM31M      | 3.2 ±0.15       | 1.0 ±0.15 | 1.15 ±0.1 | 0.3 to 0.8  | 1.5    |  |  |  |
| GRM31C      | 3.2 ±0.2        | 1.6 ±0.2  | 1.6 ±0.2  |             |        |  |  |  |

\* Bulk Case : 1.6 ±0.07(L)×0.8 ±0.07(W)×0.8 ±0.07(T)

| Part Number       | TC Code   | Rated Voltage<br>(Vdc) | Capacitance*         | Length L<br>(mm) | Width W<br>(mm) | Thickness T<br>(mm) |
|-------------------|-----------|------------------------|----------------------|------------------|-----------------|---------------------|
| GRM155R61A683KA01 | X5R (EIA) | 10                     | 68000pF±10%          | 1.0              | 0.5             | 0.50                |
| GRM155R61A104KA01 | X5R (EIA) | 10                     | 0.1µF±10%            | 1.0              | 0.5             | 0.50                |
| GRM188R61A334KA61 | X5R (EIA) | 10                     | 0.33 µF±10%          | 1.6              | 0.8             | 0.80                |
| GRM188R61A474KA61 | X5R (EIA) | 10                     | 0.47µF±10%           | 1.6              | 0.8             | 0.80                |
| GRM188R61A684KA61 | X5R (EIA) | 10                     | 0.68µF±10%           | 1.6              | 0.8             | 0.80                |
| GRM188R61A105KA61 | X5R (EIA) | 10                     | 1μF ±10%             | 1.6              | 0.8             | 0.80                |
| GRM188R60J105KA01 | X5R (EIA) | 6.3                    | 1μF ±10%             | 1.6              | 0.8             | 0.80                |
| GRM219R61A105KC01 | X5R (EIA) | 10                     | 1μF ±10%             | 2.0              | 1.25            | 0.90                |
| GRM21BR61A225KA01 | X5R (EIA) | 10                     | 2.2μF ±10%           | 2.0              | 1.25            | 1.25                |
| GRM219R60J155KC01 | X5R (EIA) | 6.3                    | 1.5μF ±10%           | 2.0              | 1.25            | 0.90                |
| GRM21BR60J225KA01 | X5R (EIA) | 6.3                    | 2.2μF ±10%           | 2.0              | 1.25            | 1.25                |
| GRM21BR60J335KA11 | X5R (EIA) | 6.3                    | $3.3 \mu F \pm 10\%$ | 2.0              | 1.25            | 1.25                |
| GRM21BR60J475KA11 | X5R (EIA) | 6.3                    | 4.7μF ±10%           | 2.0              | 1.25            | 1.25                |
| GRM319R61A225KC01 | X5R (EIA) | 10                     | 2.2μF ±10%           | 3.2              | 1.6             | 0.90                |
| GRM31XR61A335KC12 | X5R (EIA) | 10                     | $3.3 \mu F \pm 10\%$ | 3.2              | 1.6             | 1.30                |
| GRM31CR61A475KA01 | X5R (EIA) | 10                     | 4.7μF ±10%           | 3.2              | 1.6             | 1.60                |
| GRM31MR60J475KC11 | X5R (EIA) | 6.3                    | 4.7μF ±10%           | 3.2              | 1.6             | 1.15                |
| GRM31CR61A106KA01 | X5R (EIA) | 10                     | 10µF ±10%            | 3.2              | 1.6             | 1.60                |
| GRM31CR60J106KA01 | X5R (EIA) | 6.3                    | 10µF ±10%            | 3.2              | 1.6             | 1.60                |
| GRM31CR60J226ME20 | X5R (EIA) | 6.3                    | 22µF ±20%            | 3.2              | 1.6             | 1.60                |
| GRM32ER61A106KC01 | X5R (EIA) | 10                     | 10µF ±10%            | 3.2              | 2.5             | 2.50                |
| GRM55DR61H106KA01 | X5R (EIA) | 50                     | 10µF ±10%            | 5.7              | 5.0             | 2.00                |
| GRM15XR71H221KA86 | X7R (EIA) | 50                     | 220pF±10%            | 1.0              | 0.5             | 0.25                |
| GRM155R71H221KA01 | X7R (EIA) | 50                     | 220pF±10%            | 1.0              | 0.5             | 0.50                |
| GRM15XR71H331KA86 | X7R (EIA) | 50                     | 330pF±10%            | 1.0              | 0.5             | 0.25                |
| GRM155R71H331KA01 | X7R (EIA) | 50                     | 330pF±10%            | 1.0              | 0.5             | 0.50                |
| GRM15XR71H471KA86 | X7R (EIA) | 50                     | 470pF±10%            | 1.0              | 0.5             | 0.25                |
| GRM155R71H471KA01 | X7R (EIA) | 50                     | 470pF±10%            | 1.0              | 0.5             | 0.50                |
| GRM15XR71H681KA86 | X7R (EIA) | 50                     | 680pF±10%            | 1.0              | 0.5             | 0.25                |
| GRM155R71H681KA01 | X7R (EIA) | 50                     | 680pF±10%            | 1.0              | 0.5             | 0.50                |
| GRM15XR71H102KA86 | X7R (EIA) | 50                     | 1000pF±10%           | 1.0              | 0.5             | 0.25                |
| GRM155R71H102KA01 | X7R (EIA) | 50                     | 1000pF±10%           | 1.0              | 0.5             | 0.50                |
| GRM15XR71H152KA86 | X7R (EIA) | 50                     | 1500pF±10%           | 1.0              | 0.5             | 0.25                |
| GRM155R71H152KA01 | X7R (EIA) | 50                     | 1500pF±10%           | 1.0              | 0.5             | 0.50                |
| GRM155R71H222KA01 | X7R (EIA) | 50                     | 2200pF±10%           | 1.0              | 0.5             | 0.50                |

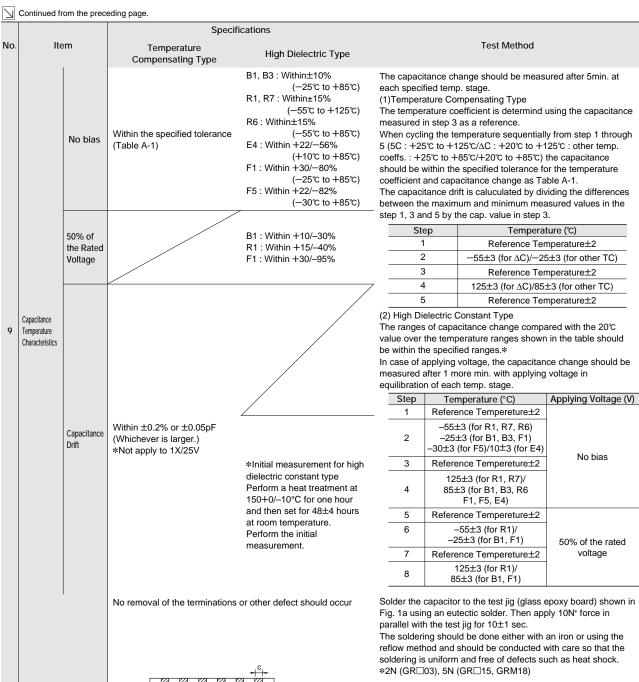
Continued on the following page.

Continued from the preceding page.

| Part Number                            | TC Code   | Rated Voltage<br>(Vdc) | Capacitance* | Length L<br>(mm) | Width W<br>(mm) | Thickness T<br>(mm) |
|----------------------------------------|-----------|------------------------|--------------|------------------|-----------------|---------------------|
| GRM155R71H332KA01                      | X7R (EIA) | 50                     | 3300pF±10%   | 1.0              | 0.5             | 0.50                |
| GRM155R71H472KA01                      | X7R (EIA) | 50                     | 4700pF±10%   | 1.0              | 0.5             | 0.50                |
| GRM15XR71E182KA86                      | X7R (EIA) | 25                     | 1800pF±10%   | 1.0              | 0.5             | 0.25                |
| GRM15XR71E222KA86                      | X7R (EIA) | 25                     | 2200pF±10%   | 1.0              | 0.5             | 0.25                |
| GRM155R71E682KA01                      | X7R (EIA) | 25                     | 6800pF±10%   | 1.0              | 0.5             | 0.50                |
| GRM155R71E103KA01                      | X7R (EIA) | 25                     | 10000pF±10%  | 1.0              | 0.5             | 0.50                |
| GRM15XR71C332KA86                      | X7R (EIA) | 16                     | 3300pF±10%   | 1.0              | 0.5             | 0.25                |
| GRM15XR71C472KA86                      | X7R (EIA) | 16                     | 4700pF±10%   | 1.0              | 0.5             | 0.25                |
| GRM15XR71C682KA86                      | X7R (EIA) | 16                     | 6800pF±10%   | 1.0              | 0.5             | 0.25                |
| GRM155R71C153KA01                      | X7R (EIA) | 16                     | 15000pF±10%  | 1.0              | 0.5             | 0.50                |
| GRM155R71C223KA01                      | X7R (EIA) | 16                     | 22000pF±10%  | 1.0              | 0.5             | 0.50                |
| GRM155R71A333KA01                      | X7R (EIA) | 10                     | 33000pF±10%  | 1.0              | 0.5             | 0.50                |
| GRM155R71A473KA01                      | X7R (EIA) | 10                     | 47000pF±10%  | 1.0              | 0.5             | 0.50                |
| GRM188R71H221KA01                      | X7R (EIA) | 50                     | 220pF±10%    | 1.6              | 0.8             | 0.80                |
| GRM188R71H331KA01                      | X7R (EIA) | 50                     | 330pF±10%    | 1.6              | 0.8             | 0.80                |
| GRM188R71H471KA01                      | X7R (EIA) | 50                     | 470pF±10%    | 1.6              | 0.8             | 0.80                |
| RM188R71H681KA01                       | X7R (EIA) | 50                     | 680pF±10%    | 1.6              | 0.8             | 0.80                |
| GRM188R71H102KA01                      | X7R (EIA) | 50                     | 1000pF±10%   | 1.6              | 0.8             | 0.80                |
| GRM188R71H152KA01                      |           | 50                     |              | 1.6              | 0.8             | 0.80                |
| GRM188R71H152KA01<br>GRM188R71H222KA01 | X7R (EIA) |                        | 1500pF±10%   |                  |                 |                     |
|                                        | X7R (EIA) | 50                     | 2200pF±10%   | 1.6              | 0.8             | 0.80                |
| GRM188R71H332KA01                      | X7R (EIA) | 50                     | 3300pF±10%   | 1.6              | 0.8             | 0.80                |
| SRM188R71H472KA01                      | X7R (EIA) | 50                     | 4700pF±10%   | 1.6              | 0.8             | 0.80                |
| GRM188R71H682KA01                      | X7R (EIA) | 50                     | 6800pF±10%   | 1.6              | 0.8             | 0.80                |
| RM188R71H103KA01                       | X7R (EIA) | 50                     | 10000pF±10%  | 1.6              | 0.8             | 0.80                |
| RM188R71H153KA01                       | X7R (EIA) | 50                     | 15000pF±10%  | 1.6              | 0.8             | 0.80                |
| GRM188R71H223KA01                      | X7R (EIA) | 50                     | 22000pF±10%  | 1.6              | 0.8             | 0.80                |
| GRM188R71E333KA01                      | X7R (EIA) | 25                     | 33000pF±10%  | 1.6              | 0.8             | 0.80                |
| GRM188R71E473KA01                      | X7R (EIA) | 25                     | 47000pF±10%  | 1.6              | 0.8             | 0.80                |
| GRM188R71E683KA01                      | X7R (EIA) | 25                     | 68000pF±10%  | 1.6              | 0.8             | 0.80                |
| GRM188R71E104KA01                      | X7R (EIA) | 25                     | 0.1µF±10%    | 1.6              | 0.8             | 0.80                |
| GRM188R71C104KA01                      | X7R (EIA) | 16                     | 0.1µF±10%    | 1.6              | 0.8             | 0.80                |
| GRM188R71A154KA01                      | X7R (EIA) | 10                     | 0.15µF±10%   | 1.6              | 0.8             | 0.80                |
| GRM188R71A224KA01                      | X7R (EIA) | 10                     | 22000pF±10%  | 1.6              | 0.8             | 0.80                |
| GRM219R71H333KA01                      | X7R (EIA) | 50                     | 33000pF±10%  | 2.0              | 1.25            | 0.90                |
| GRM21BR71H473KA01                      | X7R (EIA) | 50                     | 47000pF±10%  | 2.0              | 1.25            | 1.25                |
| GRM21BR71H683KA01                      | X7R (EIA) | 50                     | 68000pF±10%  | 2.0              | 1.25            | 1.25                |
| GRM21BR71H104KA01                      | X7R (EIA) | 50                     | 0.1µF±10%    | 2.0              | 1.25            | 1.25                |
| GRM21BR71H154KA01                      | X7R (EIA) | 50                     | 0.15µF±10%   | 2.0              | 1.25            | 1.25                |
| GRM21BR71H224KA01                      | X7R (EIA) | 50                     | 22000pF±10%  | 2.0              | 1.25            | 1.25                |
| GRM21BR71E104KA01                      | X7R (EIA) | 25                     | 0.1µF±10%    | 2.0              | 1.25            | 1.25                |
| GRM21BR71E154KA01                      | X7R (EIA) | 25                     | 0.15µF±10%   | 2.0              | 1.25            | 1.25                |
| GRM219R71E224KC01                      | X7R (EIA) | 25                     | 22000pF±10%  | 2.0              | 1.25            | 0.90                |
| GRM21BR71E334KC01                      | X7R (EIA) | 25                     | 0.33 μF±10%  | 2.0              | 1.25            | 1.25                |
| GRM21BR71E474KC01                      | X7R (EIA) | 25                     | 0.47μF±10%   | 2.0              | 1.25            | 1.25                |
| GRM219R71C474KC01                      | X7R (EIA) | 16                     | 0.47μF±10%   | 2.0              | 1.25            | 0.90                |
| RM219R71C684KC01                       | X7R (EIA) | 16                     | 0.68µF±10%   | 2.0              | 1.25            | 0.90                |
| RM21BR71C105KA01                       | X7R (EIA) | 16                     | 1μF ±10%     | 2.0              | 1.25            | 1.25                |
| RM319R71H334KA01                       | X7R (EIA) | 50                     | 0.33 μF±10%  | 3.2              | 1.25            | 0.90                |
|                                        |           |                        |              | 3.2              |                 |                     |
| GRM31MR71H474KA01                      | X7R (EIA) | 50                     | 0.47µF±10%   |                  | 1.6             | 1.15                |
| GRM319R71E684KC01                      | X7R (EIA) | 25                     | 0.68µF±10%   | 3.2              | 1.6             | 0.90                |
| SRM31MR71E105KC01                      | X7R (EIA) | 25                     | 1μF ±10%     | 3.2              | 1.6             | 1.15                |
| GRM319R71C105KC11                      | X7R (EIA) | 16                     | 1μF ±10%     | 3.2              | 1.6             | 0.90                |
| GRM31MR71C155KC11                      | X7R (EIA) | 16                     | 1.5μF ±10%   | 3.2              | 1.6             | 1.15                |
| GRM31MR71C225KA35                      | X7R (EIA) | 16                     | 2.2µF ±10%   | 3.2              | 1.6             | 1.15                |
| GRM319R71A105KC01                      | X7R (EIA) | 10                     | 1μF ±10%     | 3.2              | 1.6             | 0.90                |

Continued on the following page.

Continued from the preceding page.


| Part Number       | TC Code   | Rated Voltage<br>(Vdc) | Capacitance*       | Length L<br>(mm) | Width W<br>(mm) | Thickness T<br>(mm) |
|-------------------|-----------|------------------------|--------------------|------------------|-----------------|---------------------|
| GRM319R71A225KA01 | X7R (EIA) | 10                     | 2.2μF ±10%         | 3.2              | 1.6             | 0.90                |
| GRM32NR71H684KA01 | X7R (EIA) | 50                     | 0.68µF±10%         | 3.2              | 2.5             | 1.35                |
| GRM32RR71H105KA01 | X7R (EIA) | 50                     | 1μF ±10%           | 3.2              | 2.5             | 1.80                |
| GRM32RR71E225KC01 | X7R (EIA) | 25                     | 2.2µF ±10%         | 3.2              | 2.5             | 1.80                |
| GRM32MR71C225KC01 | X7R (EIA) | 16                     | 2.2µF ±10%         | 3.2              | 2.5             | 1.15                |
| GRM32NR71C335KC01 | X7R (EIA) | 16                     | 3.3µF ±10%         | 3.2              | 2.5             | 1.35                |
| GRM32RR71C475KC01 | X7R (EIA) | 16                     | 4.7μF ±10%         | 3.2              | 2.5             | 1.80                |
| GRM43ER71H225KA01 | X7R (EIA) | 50                     | 2.2µF ±10%         | 4.5              | 3.2             | 2.50                |
| GRM55RR71H105KA01 | X7R (EIA) | 50                     | 1μF ±10%           | 5.7              | 5.0             | 1.80                |
| GRM55RR71H155KA01 | X7R (EIA) | 50                     | 1.5μF ±10%         | 5.7              | 5.0             | 1.80                |
| GRM155F51H222ZA01 | Y5V (EIA) | 50                     | 2200pF +80%, -20%  | 1.0              | 0.5             | 0.50                |
| GRM155F51H472ZA01 | Y5V (EIA) | 50                     | 4700pF +80%, -20%  | 1.0              | 0.5             | 0.50                |
| GRM155F51H103ZA01 | Y5V (EIA) | 50                     | 10000pF +80%, -20% | 1.0              | 0.5             | 0.50                |
| GRM155F51E223ZA01 | Y5V (EIA) | 25                     | 22000pF +80%, -20% | 1.0              | 0.5             | 0.50                |
| GRM155F51C473ZA01 | Y5V (EIA) | 16                     | 47000pF +80%, -20% | 1.0              | 0.5             | 0.50                |
| GRM155F51C104ZA01 | Y5V (EIA) | 16                     | 10000pF +80%, -20% | 1.0              | 0.5             | 0.50                |
| GRM188F51H103ZA01 | Y5V (EIA) | 50                     | 10000pF +80%, -20% | 1.6              | 0.8             | 0.80                |
| GRM188F51H223ZA01 | Y5V (EIA) | 50                     | 22000pF +80%, -20% | 1.6              | 0.8             | 0.80                |
| GRM188F51H473ZA01 | Y5V (EIA) | 50                     | 47000pF +80%, -20% | 1.6              | 0.8             | 0.80                |
| GRM188F51H104ZA01 | Y5V (EIA) | 50                     | 10000pF +80%, -20% | 1.6              | 0.8             | 0.80                |
| GRM188F51E104ZA01 |           | 25                     | 10000pF +80%, -20% | 1.6              | 0.8             | 0.80                |
|                   | Y5V (EIA) |                        |                    |                  |                 |                     |
| GRM188F51C224ZA01 | Y5V (EIA) | 16                     | 22000pF +80%, -20% | 1.6              | 0.8             | 0.80                |
| GRM188F51C474ZA01 | Y5V (EIA) | 16                     | 0.47µF +80%, -20%  | 1.6              | 0.8             | 0.80                |
| GRM188F51A474ZC01 | Y5V (EIA) | 10                     | 0.47µF +80%, -20%  | 1.6              | 0.8             | 0.80                |
| GRM188F51A105ZA01 | Y5V (EIA) | 10                     | 1μF +80%, -20%     | 1.6              | 0.8             | 0.80                |
| GRM219F51H104ZA01 | Y5V (EIA) | 50                     | 10000pF +80%, -20% | 2.0              | 1.25            | 0.90                |
| GRM21BF51H224ZA01 | Y5V (EIA) | 50                     | 22000pF +80%, -20% | 2.0              | 1.25            | 1.25                |
| GRM219F51E224ZA01 | Y5V (EIA) | 25                     | 22000pF +80%, -20% | 2.0              | 1.25            | 0.90                |
| GRM21BF51E474ZA01 | Y5V (EIA) | 25                     | 0.47µF +80%, -20%  | 2.0              | 1.25            | 1.25                |
| GRM219F51E105ZA01 | Y5V (EIA) | 25                     | 1µF +80%, -20%     | 2.0              | 1.25            | 0.90                |
| GRM21BF51E225ZA01 | Y5V (EIA) | 25                     | 2.2µF +80%, -20%   | 2.0              | 1.25            | 1.25                |
| GRM219F51C105ZA01 | Y5V (EIA) | 16                     | 1µF +80%, -20%     | 2.0              | 1.25            | 0.90                |
| GRM21BF51C225ZA01 | Y5V (EIA) | 16                     | 2.2µF +80%, -20%   | 2.0              | 1.25            | 1.25                |
| GRM219F51A105ZA01 | Y5V (EIA) | 10                     | 1µF +80%, -20%     | 2.0              | 1.25            | 0.90                |
| GRM21BF51A225ZA01 | Y5V (EIA) | 10                     | 2.2µF +80%, -20%   | 2.0              | 1.25            | 1.25                |
| GRM21BF51A475ZA01 | Y5V (EIA) | 10                     | 4.7μF +80%, -20%   | 2.0              | 1.25            | 1.25                |
| GRM31MF51H474ZA01 | Y5V (EIA) | 50                     | 0.47µF +80%, -20%  | 3.2              | 1.6             | 1.15                |
| GRM31MF51E105ZA01 | Y5V (EIA) | 25                     | 1µF +80%, -20%     | 3.2              | 1.6             | 1.15                |
| GRM31MF51E475ZA01 | Y5V (EIA) | 25                     | 4.7μF +80%, -20%   | 3.2              | 1.6             | 1.15                |
| GRM319F51C105ZA01 | Y5V (EIA) | 16                     | 1µF +80%, -20%     | 3.2              | 1.6             | 0.90                |
| GRM31MF51C225ZA01 | Y5V (EIA) | 16                     | 2.2µF +80%, -20%   | 3.2              | 1.6             | 1.15                |
| GRM31MF51C475ZA12 | Y5V (EIA) | 16                     | 4.7µF +80%, -20%   | 3.2              | 1.6             | 1.15                |
| GRM319F51A225ZA01 | Y5V (EIA) | 10                     | 2.2µF +80%, -20%   | 3.2              | 1.6             | 0.90                |
| GRM31MF51A475ZA01 | Y5V (EIA) | 10                     | 4.7µF +80%, -20%   | 3.2              | 1.6             | 1.15                |
| GRM31MF51A106ZA01 | Y5V (EIA) | 10                     | 10µF +80%, -20%    | 3.2              | 1.6             | 1.15                |
| GRM31MF50J106ZA01 | Y5V (EIA) | 6.3                    | 10µF +80%, -20%    | 3.2              | 1.6             | 1.15                |
| GRM32RF51H105ZA01 | Y5V (EIA) | 50                     | 1µF +80%, -20%     | 3.2              | 2.5             | 1.80                |
| GRM329F51E475ZA01 | Y5V (EIA) | 25                     | 4.7μF +80%, -20%   | 3.2              | 2.5             | 0.90                |
| GRM32NF51E106ZA01 | Y5V (EIA) | 25                     | 10μF +80%, -20%    | 3.2              | 2.5             | 1.35                |
| GRM32NF51C106ZA01 | Y5V (EIA) | 16                     | 10μF +80%, -20%    | 3.2              | 2.5             | 1.35                |
| GRM188E41H103MA01 | Z5U (EIA) | 50                     | 10000pF±20%        | 1.6              | 0.8             | 0.80                |
| GRM188E41H223MA01 | Z5U (EIA) | 50                     | 22000pF±20%        | 1.6              | 0.8             | 0.80                |
| GRM216E41H473MA01 | Z5U (EIA) | 50                     | 47000pF±20%        | 2.0              | 1.25            | 0.60                |
| GRM219E41H104MA01 | Z5U (EIA) | 50                     | 10000pF±20%        | 2.0              | 1.25            | 0.90                |
|                   | 200 (LIA) | 50                     | 22000pF±20%        | 2.0              | 1.20            | 0.70                |

### Specifications and Test Methods

|     |                                    | Specifi                                                                                 | cations                                                                                                                                                                                                                                                                                                                            |                                                                                              |                                                                   |                                                                                                                                      |                                             |
|-----|------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| No. | Item                               | Temperature<br>Compensating Type                                                        | High Dielectric Type                                                                                                                                                                                                                                                                                                               |                                                                                              | Test                                                              | Method                                                                                                                               |                                             |
| 1   | Operating<br>Temperature<br>Range  | −55 to +125℃                                                                            | B1, B3, F1 : -25°C to +85°C<br>R1, R7 : -55°C to +125°C<br>E4 : +10°C to +85°C<br>F5 : -30°C to +85°C                                                                                                                                                                                                                              | Reference Tem $(2\Delta, 3\Delta, 4\Delta, B1)$                                              |                                                                   |                                                                                                                                      |                                             |
| 2   | Rated Voltage                      | See the previous pages                                                                  |                                                                                                                                                                                                                                                                                                                                    | The rated voltage<br>may be applied<br>When AC voltage<br>whichever is lar<br>voltage range. | continuously to<br>ge is superimpo                                | o the capacitor.<br>osed on DC volt                                                                                                  | age, V <sup>P-P</sup> or V <sup>O-P</sup> , |
| 3   | Appearance                         | No defects or abnormalities                                                             |                                                                                                                                                                                                                                                                                                                                    | Visual inspection                                                                            | n                                                                 |                                                                                                                                      |                                             |
| 4   | Dimensions                         | Within the specified dimensions                                                         | Using calipers                                                                                                                                                                                                                                                                                                                     |                                                                                              |                                                                   |                                                                                                                                      |                                             |
| 5   | Dielectric Strength                | No defects or abnormalities                                                             | No failure should be observed when 300% of the rated voltage (temperature compensating type) or 250% of the rated voltage (high dielectric constant type) is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.                                                         |                                                                                              |                                                                   |                                                                                                                                      |                                             |
| 6   | Insulation<br>Resistance           | C≦0.047µF : More than 10,000<br>C>0.047µF : 500Ω • F                                    | The insulation r<br>voltage not exc<br>75%RH max. a<br>charge/discharg                                                                                                                                                                                                                                                             | eeding the rate<br>nd within 2 min                                                           | d voltage at 20°<br>utes of charging                              | C/25℃ and                                                                                                                            |                                             |
| 7   | Capacitance                        | Within the specified tolerance                                                          |                                                                                                                                                                                                                                                                                                                                    |                                                                                              |                                                                   |                                                                                                                                      | 20℃/25℃ at the                              |
| 8   | Q/<br>Dissipation Factor<br>(D.F.) | 30pF and over : Q≧1000<br>30pF and below :<br>Q≧400+20C<br>C : Nominal Capacitance (pF) | $ \begin{array}{l} [B1, B3, R1, R6, R7, E4] \\ W.V.: 25Vmin.: 0.025max. \\ W.V.: 16/10V: 0.035max. \\ W.V.: 6.3V/4V \\ : 0.05max. (C<3.3\muF) \\ : 0.1max. (C\geq3.3\muF) \\ [F1, F5] \\ W.V.: 25Vmin. \\ : 0.05max. (C<0.1\muF) \\ : 0.09max. (C\geq0.1\muF) \\ W.V.: 16V/10V: 0.125max. \\ W.V.: 6.3V: 0.15max. \\ \end{array} $ | Item<br>Frequency                                                                            | AC to ΔU, 1X<br>(1000pF and<br>below)<br>1±0.1MHz<br>0.5 to 5Vrms | ΔC to ΔU, 1X           (more than           1000pF)           R6, R7, F5           B1, B3, F1           1±0.1kHz           1±0.2Vrms | E4<br>1±0.1kHz<br>0.5±0.05Vrms              |

Continued on the following page.

Capacitors muRata



17

Fig. 1a

 $\nabla$ 

#### soldering is uniform and free of defects such as heat shock. (in mm) Туре b с а GR□03 0.3 0.9 0.3 **GR**[]15 0.4 1.5 0.5 GRM18 1.0 3.0 1.2 GRM21 1.2 4.0 1.65 2.2 5.0 GRM31 2.0 GRM32 2.2 5.0 2.9

3.5

4.5

GRM43

GRM55

Continued on the following page.

3.7

5.6

7.0

8.0

①Note • This catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specification or transact the approval sheet for product specification before ordering. Especially, please read rating and ①CAUTION (for storage and operating, rating, soldering and mounting, handling) in them to prevent smoking and/or burning, etc.
 You are able to read a detailed specification in the website (http://search.murata.co.jp/) before to require our product specification or to transact the approval sheet for product specification.

ler resist

copper foil

Baked electrode or

Adhesive Strength

of Termination

#### Continued from the preceding page.

| 10  |                                       | -                                   | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | cations                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                        | Tool Mathead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                            |  |
|-----|---------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| No. | Ite                                   | em                                  | Temperature<br>Compensating Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | High Dielectric Type                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                          | Test Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                            |  |
|     |                                       | Appearance                          | No defects or abnormalities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                            |  |
| 1   | Vibration<br>Resistance               | Q/D.F.                              | Within the specified tolerance<br>30pF and over : Q≥1000<br>30pF and below :<br>Q≥400+20C<br>C : Nominal Capacitance (pF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [B1, B3, R1, R6, R7, E4]<br>W.V. : 25Vmin. : 0.025max.<br>W.V. : 16/10V : 0.035max.<br>W.V. : 6.3V/4V<br>: 0.05max. (C<3.3µF)<br>: 0.1max. (C≥3.3µF)<br>[F1, F5]<br>W.V. : 25Vmin.<br>: 0.05max. (C<0.1µF)<br>: 0.09max. (C≥0.1µF)<br>W.V. : 16V/10V : 0.125max.<br>W.V. : 6.3V : 0.15max. | in Fig. 2a using an eutectic solder. Then apply a force in the                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                            |  |
|     |                                       |                                     | No crack or marked defect shou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | in Fig. 2a using<br>direction show<br>done either wit                                                                                                                                                                                                                                      | Solder the capacitor on the test jig (glass epoxy board) shown<br>in Fig. 2a using an eutectic solder. Then apply a force in the<br>direction shown in Fig. 3a for 5±1sec. The soldering should be<br>done either with an iron or using the reflow method and should<br>be conducted with care so that the soldering is uniform and free |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                            |  |
| 2   | Defle                                 | ction                               | R230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 Pressurizing<br>speed : 1.0mm/sec.<br>Pressurize<br>Flexure : ≤1<br>neter<br>45                                                                                                                                                                                                          | Type<br>GR□03<br>GR□15<br>GRM18<br>GRM21<br>GRM31<br>GRM32<br>GRM43<br>GRM55                                                                                                                                                                                                                                                             | Image: height of the second | $\begin{array}{c ccc} 0 & 0.3 \\ \hline 5 & 0.5 \\ \hline 0 & 1.2 \\ \hline 0 & 1.65 \\ \hline 0 & 2.0 \\ \hline 0 & 2.9 \\ \hline 0 & 3.7 \\ \end{array}$ |  |
| 13  | Solderabi<br>Terminati                | 5                                   | 75% of the terminations are to b continuously                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (in mm)<br>Immerse the capacitor in a solution of ethanol (JIS-K-8101) and<br>rosin (JIS-K-5902) (25% rosin in weight propotion) .<br>Preheat at 80 to 120°C for 10 to 30 seconds.<br>After preheating, immerse in an eutectic solder solution for<br>$2\pm0.5$ seconds at $230\pm5$ °C.   |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                            |  |
|     |                                       |                                     | The measured and observed ch<br>specifications in the following ta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                            |  |
|     |                                       | Appearance<br>Capacitance<br>Change | No defects or abnormalities<br>Within $\pm 2.5\%$ or $\pm 0.25$ pF<br>(Whichever is larger)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B1, B3, R1, R6, R7<br>: Within ±7.5%<br>F1, F5, E4 : Within ±20%                                                                                                                                                                                                                           | Immerse the c                                                                                                                                                                                                                                                                                                                            | pacitor at 120 to 150°C for<br>apacitor in an eutectic sold<br>conds. Set at room tempera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | er solution at 270±5%                                                                                                                                      |  |
| 14  | Resistance<br>to<br>Soldering<br>Heat | Q/D.F.                              | $\begin{array}{c} \text{[B1, B3, R1, R6, R7, E4]}\\ \text{(temperature compensating tyce) or 48}\\ \text{(software and below:}\\ \text{Q} \geq 400+20C \\ \text{C: Nominal Capacitance (pF)} \end{array}  \begin{array}{c} \text{[B1, B3, R1, R6, R7, E4]}\\ \text{W.V.: 25Vmin. : 0.025max.}\\ \text{W.V.: 16/10V : 0.035max.}\\ \text{W.V.: 6.3V/4V}\\ \text{: 0.05max. (C<3.3\muF)}\\ \text{initial measurement for high dielectric or the set at room temperature for 48\pm44\\ \text{Perform a heat treatment at 150+0/-10}\\ \text{then set at room temperature for 48\pm44\\ \text{Perform the initial measurement.} \end{array}  \begin{array}{c} \text{Initial measurement for high dielectric or the set at room temperature for 48\pm44\\ \text{Perform a heat treatment at 150+0/-10}\\ \text{then set at room temperature for 48\pm44\\ \text{Perform the initial measurement.} \end{array}$ |                                                                                                                                                                                                                                                                                            | compensating tyoe) or 48±,<br>, then measure.<br>ement for high dielectric cc<br>t treatment at 150+0/-10°<br>m temperature for 48±4 ho<br>itial measurement.<br>r GRM32/43/55                                                                                                                                                           | 4 hours (high dielectri<br>onstant type<br>C for one hour and<br>ours.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                            |  |
|     |                                       |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | : 0.09max. (C≧0.1µF)<br>W.V. : 16V/10V : 0.125max.                                                                                                                                                                                                                                         | Step<br>1                                                                                                                                                                                                                                                                                                                                | Temperature<br>100℃ to 120℃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Time<br>1 min.                                                                                                                                             |  |
|     |                                       |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | W.V. : 6.3V : 0.15max.                                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                        | 170°C to 200°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 min.                                                                                                                                                     |  |
|     |                                       | I.R.                                | More than 10,000M $\Omega$ or 500 $\Omega$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F (Whichever is smaller)                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                            |  |
|     |                                       | Dielectric                          | No defects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                            |  |

#### Continued from the preceding page.

|     |                                  |                        | Specifi                                                                                                                                   | cations                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                   |                                 |               |                                 |               |
|-----|----------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------|---------------------------------|---------------|
| No. | Ite                              | em                     | Temperature<br>Compensating Type                                                                                                          | High Dielectric Type                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                   | Tes                             | t Method      | ł                               |               |
|     |                                  |                        | The measured and observed ch specifications in the following ta                                                                           |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                   |                                 |               |                                 |               |
|     |                                  | Appearance             | No defects or abnormalities                                                                                                               |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                   |                                 |               |                                 |               |
|     |                                  | Capacitance<br>Change  | Within $\pm 2.5\%$ or $\pm 0.25$ pF<br>(Whichever is larger)                                                                              | B1, B3, R1, R6, R7<br>: Within ±7.5%<br>F1, F5, E4 : Within ±20%                                                                                                                                                                                                                                                      | Fix the capacit<br>manner and ur<br>Perform the fiv<br>shown in the fo                                                                                                                                                            | nder the same<br>e cycles accor | condition     | is as (10).                     | atments       |
|     |                                  |                        |                                                                                                                                           | [B1, B3, R1, R6, R7, E4]<br>W.V. : 25Vmin. : 0.025max.<br>W.V. : 16/10V : 0.035max.                                                                                                                                                                                                                                   | Set for 24±2 h<br>hours (high die<br>measure.                                                                                                                                                                                     | lectric constan                 | it type) a    | t room tempera                  | ture, then    |
| 15  | Temperature                      | Q/D.F.                 | 30pF and over : Q≧1000<br>30pF and below :<br>D.F. Q≧400+20C                                                                              | W.V. : 6.3V/4V<br>: 0.05max. (C<3.3µF)                                                                                                                                                                                                                                                                                | Step                                                                                                                                                                                                                              | 1                               | 2             | 3                               | 4             |
|     | Cycle                            |                        |                                                                                                                                           | : 0.1max. (C≥3.3µF)<br>[F1, F5]                                                                                                                                                                                                                                                                                       | Temp. (℃)                                                                                                                                                                                                                         | Min.<br>Operating<br>Temp.+0/-3 | Room<br>Temp. | Max.<br>Operating<br>Temp.+3/-0 | Room<br>Temp. |
|     |                                  |                        | C : Nominal Capacitance (pF)                                                                                                              | W.V. : 25Vmin.<br>: 0.05max. (C<0.1µF)                                                                                                                                                                                                                                                                                | Time (min.)                                                                                                                                                                                                                       | 30±3                            | 2 to 3        | 30±3                            | 2 to 3        |
|     |                                  | I.R.                   | More than 10,000MΩ or 500Ω •                                                                                                              | : 0.09max. (C≧0.1µF)<br>W.V. : 16V/10V : 0.125max.<br>W.V. : 6.3V : 0.15max.<br>P F (Whichever is smaller)                                                                                                                                                                                                            | <ul> <li>Initial measurement for high dielectric constant type<br/>Perform a heat treatment at 150+0/-10°C for one hour and<br/>then set at room temperature for 48±4 hours.</li> <li>Perform the initial measurement.</li> </ul> |                                 |               |                                 |               |
|     | -                                | Dielectric<br>Strength | No defects                                                                                                                                |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                   |                                 |               |                                 |               |
|     |                                  |                        | The measured and observed ch specifications in the following ta                                                                           |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                   |                                 |               |                                 |               |
|     |                                  | Appearance             | No defects or abnormalities                                                                                                               |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                   |                                 |               |                                 |               |
|     |                                  | Capacitance<br>Change  | Within ±5% or ±0.5pF<br>(Whichever is larger)                                                                                             | B1, B3, R1, R6, R7, C8<br>: Within ±12.5%<br>F1, F5 : Within ±30%                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                   |                                 |               |                                 |               |
| 16  | Humidity<br>16 (Steady<br>State) | Q/D.F.                 | 30pF and over : Q≧350<br>10pF and over<br>30pF and below :<br>Q≧275+2.5C<br>10pF and below :<br>Q≧200+10C<br>C : Nominal Capacitance (pF) | $\begin{array}{l} [B1, B3, R1, R6, R7, E4]\\ W.V.: 25Vmin.: 0.05max.\\ W.V.: 16/10V: 0.05max.\\ W.V.: 6.3V/4V\\ : 0.075max. (C<3.3\muF)\\ : 0.125max. (C\geq3.3\muF)\\ [F1, F5]\\ W.V.: 25Vmin.\\ : 0.075max. (C<0.1\muF)\\ : 0.125max. (C\geq0.1\muF)\\ W.V.: 16V/10V: 0.15max.\\ W.V.: 6.3V: 0.2max.\\ \end{array}$ | $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                             |                                 |               | perature compe                  | ensating      |
|     |                                  | I.R.                   | More than 1,000M $\Omega$ or 50 $\Omega \bullet F$                                                                                        | (Whichever is smaller)                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                   |                                 |               |                                 |               |

Continued on the following page.

#### Continued from the preceding page.

|     |                          |                       | Specifi                                                                                                                                   | ications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                      |
|-----|--------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No. | Ite                      | em                    | Temperature<br>Compensating Type                                                                                                          | High Dielectric Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Test Method                                                                                                                                                                                                                                                                                                                                                          |
|     |                          |                       | The measured and observed ch specifications in the following ta                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                      |
|     |                          | Appearance            | No defects or abnormalities                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                    |
|     |                          | Capacitance<br>Change | Within $\pm$ 7.5% or $\pm$ 0.75pF<br>(Whichever is larger)                                                                                | B1, B3, R1, R6, R7<br>: Within ±12.5%<br>F1, F5, E4 : Within ±30%<br>[W.V. : 10Vmax.]<br>F1, F5 : Within +30/-40%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Apply the rated voltage at $40\pm2^{\circ}$ C and 90 to 95% humidity for 500±12 hours. Remove and set for 24±2 hours (temperature                                                                                                                                                                                                                                    |
| 17  | Humidity<br>Load         | Q/D.F.                | 30pF and over : Q≧200<br>30pF and below :<br>Q≧100+10C/3<br>C : Nominal Capacitance (pF)                                                  | $ \begin{array}{l} [B1, B3, R1, R6, R7, E4] \\ W.V.: 25Vmin.: 0.05max. \\ W.V.: 16/10V: 0.05max. \\ W.V.: 6.3V \\ : 0.075max. (C<3.3\mu F) \\ : 0.125max. (C\geq3.3\mu F) \\ [F1, F5] \\ W.V.: 25Vmin. \\ : 0.075max. (C<0.1\mu F) \\ : 0.125max. (C\geq0.1\mu F) \\ W.V.: 16V/10V: 0.15max. \\ W.V.: 6.3V: 0.2max. \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>compensating type) or 48±4 hours (high dielectric constant type) at room temprature, then muasure. The charge/discharge current is less than 50mA.</li> <li>Initial measurement for F1, F5/10V max.<br/>Apply the rated DC voltage for 1 hour at 40±2°C.<br/>Remove and set for 48±4 hours at room temperature.<br/>Perform initial measurement.</li> </ul> |
|     |                          | I.R.                  | More than 500M $\Omega$ or 25 $\Omega$ • F (V                                                                                             | Whichever is smaller)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                      |
|     |                          |                       | The measured and observed ch<br>specifications in the following ta                                                                        | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                      |
|     |                          | Appearance            | No defects or abnormalities                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                      |
|     |                          | Capacitance<br>Change | Within ±3% or ±0.3pF<br>(Whichever is larger)                                                                                             | B1, B3, R1, R6, R7<br>: Within ±12.5%<br>F1, F5, E4 : Within ±30%<br>[Exept 10Vmax. and.<br>C≧1.0μF]<br>F1, F5 : Within +30/−40%<br>[10Vmax. and. C≧1.0μF]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Apply 200% of the rated voltage at the maximum operating temperature ±3°C for 1000±12 hours.<br>Set for 24±2 hours (temperature compensating type) or 48±4 hours (high dielectric constant type) at room temperature.                                                                                                                                                |
| 18  | High Temperature<br>Load | Q/D.F.                | 30pF and over : Q≥350<br>10pF and over<br>30pF and below :<br>Q≥275+2.5C<br>10pF and below :<br>Q≥200+10C<br>C : Nominal Capacitance (pF) | $eq:started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_st$ | <ul> <li>temperature, then measure.</li> <li>The charge/discharge current is less than 50mA.</li> <li>Initial measurement for high dielectric constant type.</li> <li>Apply 200% of the rated DC voltage at the maximun operating temperature ±3°C for one hour. Remove and set for 48±4 hours at room temperature.</li> <li>Perform initial measurement.</li> </ul> |
|     |                          | I.R.                  | More than 1,000M $\Omega$ or 50 $\Omega$ •F (                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                      |

Continued on the following page.

### Continued from the preceding page.

### Table A-1

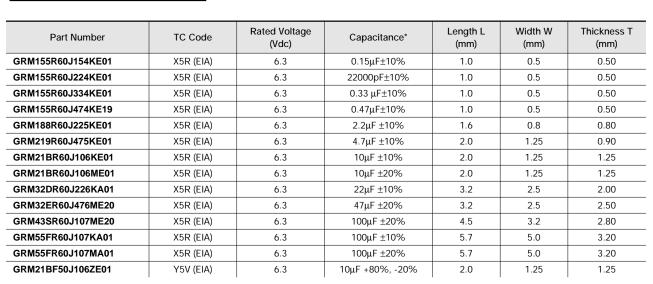
|       |                          | Capacitance Change from 25°C (%) |       |      |       |      |       |  |  |
|-------|--------------------------|----------------------------------|-------|------|-------|------|-------|--|--|
| Char. | Nominal Values (ppm/℃)*1 | -55                              |       | -    | 30    | -10  |       |  |  |
|       |                          | Max.                             | Min.  | Max. | Min.  | Max. | Min.  |  |  |
| 5C    | 0± 30                    | 0.58                             | -0.24 | 0.40 | -0.17 | 0.25 | -0.11 |  |  |
| 6C    | 0± 60                    | 0.87                             | -0.48 | 0.59 | -0.33 | 0.38 | -0.21 |  |  |
| 6P    | -150± 60                 | 2.33                             | 0.72  | 1.61 | 0.50  | 1.02 | 0.32  |  |  |
| 6R    | -220± 60                 | 3.02                             | 1.28  | 2.08 | 0.88  | 1.32 | 0.56  |  |  |
| 6S    | $-330\pm 60$             | 4.09                             | 2.16  | 2.81 | 1.49  | 1.79 | 0.95  |  |  |
| 6T    | -470± 60                 | 5.46                             | 3.28  | 3.75 | 2.26  | 2.39 | 1.44  |  |  |
| 7U    | -750±120                 | 8.78                             | 5.04  | 6.04 | 3.47  | 3.84 | 2.21  |  |  |
| 1X    | +350 to -1000            | _                                | -     | _    | _     | -    | _     |  |  |

\*1Nominal values denote the temperature coefficient within a range of 25°C to 125°C (for  $\Delta$ C)/85°C (for other TC).

|       |                          |      | (     | Capacitance Cha | ange from 20°C (%) | )    |       |
|-------|--------------------------|------|-------|-----------------|--------------------|------|-------|
| Char. | Nominal Values (ppm/℃)*2 | -    | -55   | -               | -25                | -    | -10   |
|       | -                        | Max. | Min.  | Max.            | Min.               | Max. | Min.  |
| 2C    | 0± 60                    | 0.82 | -0.45 | 0.49            | -0.27              | 0.33 | -0.18 |
| 3C    | 0±120                    | 1.37 | -0.90 | 0.82            | -0.54              | 0.55 | -0.36 |
| 4C    | 0±250                    | 2.56 | -1.88 | 1.54            | -1.13              | 1.02 | -0.75 |
| 2P    | -150± 60                 | _    | -     | 1.32            | 0.41               | 0.88 | 0.27  |
| 3P    | -150±120                 | -    | -     | 1.65            | 0.14               | 1.10 | 0.09  |
| 4P    | $-150\pm 250$            | -    | -     | 2.36            | -0.45              | 1.57 | -0.30 |
| 2R    | $-220\pm 60$             | -    | -     | 1.70            | 0.72               | 1.13 | 0.48  |
| 3R    | -220±120                 | -    | -     | 2.03            | 0.45               | 1.35 | 0.30  |
| 4R    | -220±250                 | -    | -     | 2.74            | -0.14              | 1.83 | -0.09 |
| 2S    | $-330\pm 60$             | -    | -     | 2.30            | 1.22               | 1.54 | 0.81  |
| 3S    | -330±120                 | -    | -     | 2.63            | 0.95               | 1.76 | 0.63  |
| 4S    | -330±250                 | -    | -     | 3.35            | 0.36               | 2.23 | 0.24  |
| 2T    | -470± 60                 | -    | -     | 3.07            | 1.85               | 2.05 | 1.23  |
| 3T    | -470±120                 | -    | -     | 3.40            | 1.58               | 2.27 | 1.05  |
| 4T    | $-470\pm250$             | _    | _     | 4.12            | 0.99               | 2.74 | 0.66  |
| 3U    | -750±120                 | -    | -     | 4.94            | 2.84               | 3.29 | 1.89  |
| 4U    | -750±250                 | _    | -     | 5.65            | 2.25               | 3.77 | 1.50  |

\*2Nominal values denote the temperature coefficient within a range of 20°C to 125°C (for  $\Delta$ C)/85°C (for other TC).

## Monolithic Ceramic Capacitors GR\_R6/R7/F5/E4 (X5R/X7R/Y5V/Z5U)


High Dielectric Constant Type 100V

| Part Number       | TC Code   | Rated Voltage<br>(Vdc) | Capacitance*       | Length L<br>(mm) | Width W<br>(mm) | Thickness T<br>(mm) |
|-------------------|-----------|------------------------|--------------------|------------------|-----------------|---------------------|
| GRM188R72A222KD01 | X7R (EIA) | 100                    | 2200pF±10%         | 1.6              | 0.8             | 0.80                |
| GRM188R72A332KD01 | X7R (EIA) | 100                    | 3300pF±10%         | 1.6              | 0.8             | 0.80                |
| GRM219R72A472KA01 | X7R (EIA) | 100                    | 4700pF±10%         | 2.0              | 1.25            | 0.90                |
| GRM219R72A682KA01 | X7R (EIA) | 100                    | 6800pF±10%         | 2.0              | 1.25            | 0.90                |
| GRM21BR72A103KA01 | X7R (EIA) | 100                    | 10000pF±10%        | 2.0              | 1.25            | 1.25                |
| GRM31MR72A333KA01 | X7R (EIA) | 100                    | 33000pF±10%        | 3.2              | 1.6             | 1.15                |
| GRM31MR72A473KA01 | X7R (EIA) | 100                    | 47000pF±10%        | 3.2              | 1.6             | 1.15                |
| GRM32NR72A683KA01 | X7R (EIA) | 100                    | 68000pF±10%        | 3.2              | 2.5             | 1.35                |
| GRM32NR72A104KA01 | X7R (EIA) | 100                    | 0.1µF±10%          | 3.2              | 2.5             | 1.35                |
| GRM43RR72A154KA01 | X7R (EIA) | 100                    | 0.15µF±10%         | 4.5              | 3.2             | 1.80                |
| GRM43RR72A224KA01 | X7R (EIA) | 100                    | 22000pF±10%        | 4.5              | 3.2             | 1.80                |
| GRM43DR72A474KA01 | X7R (EIA) | 100                    | 0.47µF±10%         | 4.5              | 3.2             | 2.00                |
| GRM55DR72A105KA01 | X7R (EIA) | 100                    | 1μF ±10%           | 5.7              | 5.0             | 2.00                |
| GRM188F52A472ZD01 | Y5V (EIA) | 100                    | 4700pF +80%, -20%  | 1.6              | 0.8             | 0.80                |
| GRM32NF52A104ZA01 | Y5V (EIA) | 100                    | 10000pF +80%, -20% | 3.2              | 2.5             | 1.35                |
| GRM55RF52A474ZA01 | Y5V (EIA) | 100                    | 0.47µF +80%, -20%  | 5.7              | 5.0             | 1.80                |

# Monolithic Ceramic Capacitors GR\_R6/R7/F5/E4 (X5R/X7R/Y5V/Z5U)

Thin Layer Large-Capacitance type

| Part Number |            | Dime             | nsions (mi  | n)          |        |     |
|-------------|------------|------------------|-------------|-------------|--------|-----|
| Fait Number | L          | W                | T           | e min.      | g min. |     |
| GRM033      | 0.6 ±0.03  | 0.3 ±0.03        | 0.3 ±0.03   | 0.1 to 0.2  | 0.2    |     |
| GRM155      | 1.0 ±0.05  | 0.5 ±0.05        | 0.5 ±0.05   | 0.15 to 0.3 | 0.4    | . 4 |
| GRM185      | 1.6 ±0.1   | 0.8 ±0.1         | 0.5 +0/-0.2 | 0.2 to 0.5  | 0.5    | _*  |
| GRM188      | 1.6 ±0.1   | 0.8 ±0.1         | 0.8 ±0.1    | 0.2 to 0.5  | 0.5    | · • |
| GRM216      |            |                  | 0.6 ±0.1    |             |        |     |
| GRM219      | 2.0 ±0.1   | 1.25 ±0.1        | 0.85 ±0.1   | 0.2 to 0.7  | 0.7    |     |
| GRM21B      |            |                  | 1.25 ±0.1   |             |        |     |
| GRM316      |            |                  | 0.6 ±0.1    |             |        |     |
| GRM319      | 3.2 ±0.15  | 1.6 ±0.15        | 0.85 ±0.1   | 0.3 to 0.8  | 1.5    | е   |
| GRM31M      | 1          |                  | 1.15 ±0.1   | 0.3 10 0.8  | 1.5    | -   |
| GRM31C      | 3.2 ±0.2   | 1.6 ±0.2         | 1.6 ±0.2    |             |        |     |
| GRM32D      | 3.2 ±0.3   | 2.5 +0.2         | 2.0 ±0.2    | 0.3         | 1.0    |     |
| GRM32E      | 1 3.2 ±0.3 | 2.5 <u>1</u> 0.2 | 2.5 ±0.2    | 0.5         | 1.0    |     |
| GRM43D      |            |                  | 2.0 ±0.2    |             |        |     |
| GRM43E      | 4.5 ±0.4   | 3.2 ±0.3         | 2.5 ±0.2    | 0.3         | 2.0    |     |
| GRM43S      | 1          |                  | 2.8 ±0.2    |             |        |     |
| GRM55F      | 5.7 ±0.4   | 5.0 ±0.4         | 3.2 ±0.2    | 0.3         | 2.0    |     |



| No. | Iter                              | m                              | S                                                                                                      |                                                                                                                                          | Test Method                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               |                                                                           |  |  |
|-----|-----------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------|--|--|
| 1   | Operating<br>Temperature<br>Range |                                | B1, B3, F1 : -25°C to +88<br>R6 : -55°C to +85°C<br>F5 : -30°C to +85°C<br>C8 : -55°C to +105°C, C7    |                                                                                                                                          |                                                                                                 | eference Temperature : 25°C<br>31, B3, F1 : 20°C)                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |                                                                           |  |  |
| 2   | Rated Voltage                     |                                | See the previous pages                                                                                 |                                                                                                                                          | may be ap<br>When AC<br>whichever                                                               | The rated voltage is defined as the maximum voltage which<br>may be applied continuously to the capacitor.<br>When AC voltage is superimposed on DC voltage, V <sup>P.P</sup> or V<br>whichever is larger, should be maintained within the rated<br>voltage range.                                                                                                                                                                                                    |                                               |                                                                           |  |  |
| 3   | Appearance                        | се                             | No defects or abnormalities                                                                            |                                                                                                                                          | Visual insp                                                                                     | Visual inspection                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |                                                                           |  |  |
| 4   | Dimension                         | ns                             | Within the specified dime                                                                              | nsions                                                                                                                                   | Using calip                                                                                     | pers                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                               |                                                                           |  |  |
| 5   | Dielectric Strength               |                                | No defects or abnormaliti                                                                              | es                                                                                                                                       | is applied I                                                                                    | No failure should be observed when 250% of the rated vo<br>is applied between the terminations for 1 to 5 seconds,<br>provided the charge/discharge current is less than 50mA.                                                                                                                                                                                                                                                                                        |                                               |                                                                           |  |  |
| 6   | Insulation<br>Resistance          |                                | More than 50 $\Omega$ • F                                                                              |                                                                                                                                          | not exceed<br>75%RH ma                                                                          | The insulation resistance should be measured with a DC voltage<br>not exceeding the rated voltage at Reference Temperature and<br>75%RH max. and within 1 minutes of charging, provided the<br>charge/discharge current is less than 50mA.                                                                                                                                                                                                                            |                                               |                                                                           |  |  |
|     |                                   |                                | Within the specified tolera                                                                            | ance                                                                                                                                     |                                                                                                 | The capacitance should be measured at Reference<br>Temperature at the frequency and voltage shown in the tabl                                                                                                                                                                                                                                                                                                                                                         |                                               |                                                                           |  |  |
| 7   | Capacitan                         | ce                             |                                                                                                        | *Table 1<br>GRM155 B3/R6 1A 124 to 224<br>GRM185 B3/R6 1A 105<br>GRM188 B3/R6 1C/1A 225<br>GRM219 B3/R6 1A 475                           | - C≦10<br>- C≦10<br>- C>10                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Frequency<br>1±0.1kHz<br>1±0.1kHz<br>120±24Hz | Voltage           1.0±0.2Vrms           0.5±0.1Vrms           0.5±0.1Vrms |  |  |
|     |                                   |                                | B1, B3, R6, C7, C8 : 0.1<br>F1, F5 : 0.2 max.                                                          | GRM21B B3/R6 1C/1A 106                                                                                                                   | _ iter<br>The D.F. s<br>frequency                                                               | items on the left side.<br>The D.F. should be measured at Reference Temperature at th<br>frequency and voltage shown in the table.                                                                                                                                                                                                                                                                                                                                    |                                               |                                                                           |  |  |
| 8   | Dissipation<br>(D.F.)             | n Factor                       |                                                                                                        | *Table 1<br>GRM155 B3/R6 1A 124 to 224<br>GRM185 B3/R6 1A 105<br>GRM188 B3/R6 1C/1A 225<br>GRM219 B3/R6 1A 475<br>GRM21B B3/R6 1C/1A 106 | C≦10<br>C≦10<br>C≥10<br>C>10<br>×1 Ho                                                           | Capacitance         Frequency           C≤10µF (10V min.)*1         1±0.1kHz           C≤10µF (6.3V max.)         1±0.1kHz           C>10µF         120±24Hz           *1         However the Voltage is 0.5+/−0.1\<br>items on the left side.                                                                                                                                                                                                                        |                                               | 1.0±0.2Vrms<br>0.5±0.1Vrms<br>0.5±0.1Vrms                                 |  |  |
|     |                                   | No bias                        | R6         : Within +/-15%           F5         : Within +22/-82°           C7         : Within +/-22% | % (−25°C to +85°C)                                                                                                                       | each speci<br>The ranges<br>Reference<br>shown in th<br>In case of<br>measured<br>equilibration | The capacitance change should be measured after 5min. at each specified temp. stage.<br>The ranges of capacitance change compared with the Reference Temperature value over the temperature ranges shown in the table should be within the specified ranges.*<br>In case of applying voltage, the capacitance change should I measured after 1 more min. with applying voltage in equilibration of each temp. stage.<br>*GRM43 B1/R6 0J/1A 336/476 only : 1.0±0.2Vrms |                                               |                                                                           |  |  |
|     | -                                 |                                |                                                                                                        |                                                                                                                                          | Step                                                                                            | Temperatur                                                                                                                                                                                                                                                                                                                                                                                                                                                            | те (°С)                                       | Applying Voltage (V)                                                      |  |  |
| 9   | Capacitance<br>Temperature        | 50% of<br>the Rated<br>Voltage | $E_1^{(1)}$ Within $\pm 30/-95\%$                                                                      | 12                                                                                                                                       | Reference Ten<br>-55±3 (for R<br>-25±3 (for B<br>-30±3 (f                                       | 6, C7, C8)/<br>1, B3, F1)                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                               |                                                                           |  |  |
|     | Characteristics                   |                                |                                                                                                        | 3                                                                                                                                        | Reference Ten                                                                                   | npereture±2                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No bias                                       |                                                                           |  |  |
|     |                                   |                                |                                                                                                        | 4                                                                                                                                        | 85±3 (for B1, B3<br>125±3 (fo<br>105±3 (fo                                                      | or C7)/                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |                                                                           |  |  |
|     |                                   |                                |                                                                                                        | 5                                                                                                                                        | 20±                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |                                                                           |  |  |
|     |                                   |                                |                                                                                                        | 6                                                                                                                                        | -25±3 (for                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50% of the rated                              |                                                                           |  |  |
|     |                                   |                                |                                                                                                        | 78                                                                                                                                       | 20±                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | voltage                                       |                                                                           |  |  |
|     |                                   |                                |                                                                                                        |                                                                                                                                          | <ul> <li>Initial mea</li> <li>Perform a</li> </ul>                                              | $85\pm3$ (for<br>asurement for hig<br>heat treatment at<br>r 48±4 hours at n                                                                                                                                                                                                                                                                                                                                                                                          | h dielectric cor<br>150 +0/-10°0              | C for one hour and                                                        |  |  |

Continued on the following page.

#### Continued from the preceding page.

| No. | Item                                   | Specifications                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Test Method                                                                                             |                                                                          |                                                 |  |  |
|-----|----------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------|--|--|
|     |                                        | No removal of the terminations or other defects should occur                         | Solder the capacitor on the test jig (glass epoxy board) shown<br>in Fig. 1a using an eutectic solder. Then apply $10N^*$ force in<br>parallel with the test jig for $10+/-1$ sec.<br>The soldering should be done either with an iron or using the<br>reflow method and should be conducted with care so that the<br>soldering is uniform and free of defects such as heat shock.<br>*5N : GR $\Box$ 15/GRM18, 2N : GR $\Box$ 33                                                          |                                                                                                         |                                                                          |                                                 |  |  |
| 10  | Adhesive Strength<br>of Termination    | Solder resist<br>Baked electrode or<br>copper foil                                   | Type<br>GR□03<br>GR□15<br>GRM18<br>GRM21<br>GRM31<br>GRM31                                                                                                                                                                                                                                                                                                                                                                                                                                 | a<br>0.3<br>0.4<br>1.0<br>1.2<br>2.2                                                                    | b<br>0.9<br>1.5<br>3.0<br>4.0<br>5.0                                     | c<br>0.3<br>0.5<br>1.2<br>1.65<br>2.0           |  |  |
|     |                                        | Fig. 1a                                                                              | GRM32<br>GRM43<br>GRM55                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.2<br>3.5<br>4.5                                                                                       | 5.0<br>7.0<br>8.0                                                        | 2.9<br>3.7<br>5.6                               |  |  |
|     | Appearance No defects or abnormalities |                                                                                      | Solder the capacit                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | or on the test ji                                                                                       | ig (glass epoxy                                                          | board) in the                                   |  |  |
| 11  | Capacitance<br>Vibration<br>D.F.       | Within the specified tolerance<br>B1, B3, R6, C7, C8 : 0.1 max.<br>F1, F5 : 0.2 max. | same manner and under the same conditions as (10).<br>The capacitor should be subjected to a simple harmonic motion<br>having a total amplitude of 1.5mm, the frequency being varied<br>uniformly between the approximate limits of 10 and 55Hz. The<br>frequency range, from 10 to 55Hz and return to 10Hz, should<br>be traversed in approximately 1 minute. This motion should be<br>applied for a period of 2 hours in each 3 mutually perpendicular<br>directions (total of 6 hours). |                                                                                                         |                                                                          |                                                 |  |  |
|     |                                        | No cracking or marking defects should occur                                          | Solder the capacit<br>in Fig. 2a using an<br>direction shown in<br>be done either with<br>should be conduct<br>and free of defects                                                                                                                                                                                                                                                                                                                                                         | eutectic solde<br>Fig. 3a for 5+,<br>an iron or usi<br>ed with care so                                  | r. Then apply a<br>/-1 sec. The s<br>ng the reflow r<br>o that the solde | a force in the<br>oldering should<br>nethod and |  |  |
| 12  | Deflection                             | ction $45$ $45$ $45$                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ \begin{array}{c} & & \\ & & \\ \hline \\$ |                                                                          |                                                 |  |  |
|     |                                        |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                       |                                                                          | R□15 : t : 0.8mm)                               |  |  |
|     |                                        | Fig.3a                                                                               | Type<br>GR⊡03                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3                                                                                                     | b<br>0.9                                                                 | с<br>0.3                                        |  |  |
|     |                                        |                                                                                      | <u></u><br>GR⊡15                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.3                                                                                                     | 1.5                                                                      | 0.3                                             |  |  |
|     |                                        |                                                                                      | GRM18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0                                                                                                     | 3.0                                                                      | 1.2                                             |  |  |
|     |                                        |                                                                                      | GRM21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.2                                                                                                     | 4.0                                                                      | 1.65                                            |  |  |
|     |                                        |                                                                                      | GRM31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.2                                                                                                     | 5.0                                                                      | 2.0                                             |  |  |
|     |                                        |                                                                                      | GRM32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.2                                                                                                     | 5.0                                                                      | 2.9                                             |  |  |
|     |                                        |                                                                                      | GRM43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.5                                                                                                     | 7.0                                                                      | 3.7                                             |  |  |
|     |                                        |                                                                                      | GRM55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.5                                                                                                     | 8.0                                                                      | 5.6                                             |  |  |
|     |                                        |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                         |                                                                          | (in mm)                                         |  |  |
| 13  | Solderability of<br>Termination        | 75% of the terminations is to be soldered evenly and continuously                    | Immerse the capacitor in a solution of ethanol (JIS-K-8101) an<br>rosin (JIS-K-5902) (25% rosin in weight propotion).<br>Preheat at 80 to 120°C for 10 to 30 seconds.<br>After preheating, immerse in an eutectic solder solution for<br>2+/-0.5 seconds at 230+/-5°C.                                                                                                                                                                                                                     |                                                                                                         |                                                                          |                                                 |  |  |

Continued on the following page.

### Continued from the preceding page.

| No.                                               | Item Specifications                           |                                                                                                                                                |                                                                      | Test Method                                                                                                                                                                                                                                                                                                                                                            |           |                                   |           |  |  |  |
|---------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------|-----------|--|--|--|
|                                                   | Appearance<br>Capacitance<br>Change<br>Q/D.F. | No defects or abnormalities           B1, B3, R6, C7, C8 : Within ±7.5%           F1, F5 : Within ±20%           B1, B3, R6, C7, C8 : 0.1 max. | Immerse the c<br>270+/−5℃ for<br>24+/−2 hours                        | Preheat the capacitor at 120 to 150°C for 1 minute.<br>Immerse the capacitor in an eutectic solder solution at<br>270+/-5°C for 10+/-0.5 seconds. Set at room temperature fo<br>24+/-2 hours (temperature compensating tyoe) or 48+/-4<br>hours (high dielectric constant type), then measure.                                                                         |           |                                   |           |  |  |  |
| Resistan                                          |                                               | F1, F5 : 0.2 max.                                                                                                                              | Initial measurements                                                 | Initial measurement for high dielegtric constant type                                                                                                                                                                                                                                                                                                                  |           |                                   |           |  |  |  |
| 14 to<br>Solderin<br>Heat                         |                                               | More than 50Ω • F No defects                                                                                                                   | Perform a hea<br>then set at roo                                     | Perform a heat treatment at 150+0/-10°C for one hour and<br>then set at room temperature for 48+/-4 hours.<br>Perform the initial measurement.<br>*Preheating for GRM32/43/55                                                                                                                                                                                          |           |                                   |           |  |  |  |
|                                                   |                                               |                                                                                                                                                | *Preheating for                                                      |                                                                                                                                                                                                                                                                                                                                                                        |           |                                   |           |  |  |  |
|                                                   |                                               |                                                                                                                                                | Step                                                                 | Temp                                                                                                                                                                                                                                                                                                                                                                   | oerature  | Т                                 | Time      |  |  |  |
|                                                   |                                               |                                                                                                                                                | 1 100°C to 120°C<br>2 170°C to 200°C                                 |                                                                                                                                                                                                                                                                                                                                                                        |           |                                   | 1 min.    |  |  |  |
|                                                   | Appearance                                    | No defects or abnormalities                                                                                                                    | Fix the capaci                                                       | Fix the capacitor to the supporting jig in the same manner a                                                                                                                                                                                                                                                                                                           |           |                                   |           |  |  |  |
|                                                   | Capacitance<br>Change                         | B1, B3, R6, C7, C8 : Within ±7.5%<br>F1, F5 : Within ±20%                                                                                      | Perform the fi                                                       | under the same conditions as (10).<br>Perform the five cycles according to the four heat treatments<br>shown in the following table.<br>Set for 24+/-2 hours (temperature compensating type) or<br>48+/-4 hours (high dielectric constant type) at room                                                                                                                |           |                                   |           |  |  |  |
|                                                   | D.F.                                          | B1, B3, R6, C7, C8 : 0.1 max.<br>F1, F5 : 0.2 max.                                                                                             | Set for 24+/-                                                        |                                                                                                                                                                                                                                                                                                                                                                        |           |                                   |           |  |  |  |
|                                                   | I.R.                                          | More than 50Ω • F                                                                                                                              | temperature,                                                         | then measure.                                                                                                                                                                                                                                                                                                                                                          |           |                                   |           |  |  |  |
| Temperatu<br>15 Sudden<br>Change                  | re Dielectric<br>Strength                     | No defects                                                                                                                                     | Step                                                                 | 1<br>Min.                                                                                                                                                                                                                                                                                                                                                              | 2<br>Room | 3<br>Max.                         | 4<br>Room |  |  |  |
| Change                                            |                                               |                                                                                                                                                | Temp. (℃)<br>                                                        | Operating<br>Temp. +0/-3<br>30±3                                                                                                                                                                                                                                                                                                                                       | Tomp      | Operating<br>Temp. +3/-0<br>30±3  | Tomp      |  |  |  |
|                                                   | Appearance<br>Capacitance<br>Change           | No defects or abnormalities<br>B1, B3, R6, C7, C8 : Within ±12.5%<br>F1, F5 : Within ±30%                                                      | Perform a hea<br>then set at roc<br>Perform the in<br>Apply the rate | rement for high dielectric constant type<br>at treatment at $150+0/-10^{\circ}$ C for one hour and<br>om temperature for $48+/-4$ hours.<br>hitial measurement.<br>In voltage at $40+/-2^{\circ}$ C and 90 to 95% humidit<br>urs. The charge/discharge currentis less than                                                                                             |           |                                   |           |  |  |  |
| High<br>Temperatu<br>High<br>Humidity<br>(Steady) |                                               | B1, B3, R6, C7, C8 : 0.2 max.<br>F1, F5 : 0.4 max.<br>More than 12.5Ω • F                                                                      | Perform a heat then let sit for                                      | <ul> <li>Initial measurement<br/>Perform a heat treatment at 150+0/-10°C for one hour and<br/>then let sit for 48+/-4 hours at room temperature. Perform the<br/>initial measurement.</li> <li>Measurement after test<br/>Perform a heat treatment at 150+0/-10°C for one hour and<br/>then let sit for 48+/-4 hours at room temperature, then<br/>measure.</li> </ul> |           |                                   |           |  |  |  |
| (oroady)                                          |                                               |                                                                                                                                                | Perform a hea<br>then let sit for                                    |                                                                                                                                                                                                                                                                                                                                                                        |           |                                   |           |  |  |  |
|                                                   | Appearance                                    | No defects or abnormalities                                                                                                                    |                                                                      |                                                                                                                                                                                                                                                                                                                                                                        | -         | 000+/-12 hou                      |           |  |  |  |
|                                                   | Capacitance<br>Change                         | B1, B3, R6, C7, C8 : Within ±12.5%<br>F1, F5 : Within ±30%                                                                                     | hours at room                                                        | <ul> <li>maximum operating temperature +/-3°C. Let sit for 48+/-4 hours at room temperature, then measure.</li> <li>The charge/ discharge current is less than 50mA.</li> <li>Initial measurement</li> <li>Perform a heat treatment at 150+0/-10°C for one hour and then let sit for 48+/-4 hours at room temperature. Perform the initial measurement.</li> </ul>     |           |                                   |           |  |  |  |
|                                                   | D.F.                                          | B1, B3, R6, C7, C8 : 0.1 max.<br>F1, F5 : 0.4 max.                                                                                             | •Initial measu                                                       |                                                                                                                                                                                                                                                                                                                                                                        |           |                                   |           |  |  |  |
| 17 Durabili                                       | <sup>y</sup> I.R.                             | More than 25Ω • F                                                                                                                              | then let sit for                                                     |                                                                                                                                                                                                                                                                                                                                                                        |           |                                   |           |  |  |  |
|                                                   |                                               |                                                                                                                                                |                                                                      | t treatment at                                                                                                                                                                                                                                                                                                                                                         |           | 10℃ for one ho<br>temperature, th |           |  |  |  |