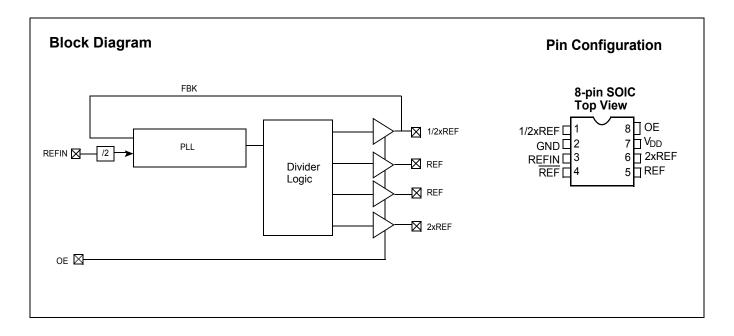


Features

- · 4-multiplier configuration
- Single phase-locked loop architecture
- Phase Alignment
- · Low jitter, high accuracy outputs
- · Output enable pin
- 3.3V operation
- 5V Tolerant input
- · Internal loop filter
- 8-pin 150-mil SOIC package
- · Commercial and Industrial Temperature available


Phase-Aligned Clock Multiplier

Benefits

- 1/2x, 1x, 1x, 2x Ref
- 10 MHz to 166.67 MHz operating range (reference input from 20 MHz to 83.33 MHz)
- All outputs will have a consistent phase relationship with each other and the reference input
- · Meets critical timing requirements
- Enables design flexibility and lower power consumption
- · Supports industry standard design platforms
- · Allows flexibility on Reference input
- · Alleviates the need for external components
- · Industry standard packaging saves on board space
- · Suitable for wide spectrum of applications

Selector Guide

Part Number	Outputs	Input Frequency Range	Output Frequency Range	Specifics
CY2300SC	4	20 MHz-83.33 MHz	10 MHz-166.67 MHz	Commercial Temperature
CY2300SI	4	20 MHz-83.33 MHz	10 MHz-166.6 7MHz	Industrial Temperature

Pin Definitions

Pin	Signal ^[1] Description		
1	1/2xREF	Clock output, 1/2x Reference	
2	GND	Ground	
3	REFIN	Input Reference frequency, 5V tolerant input	
4	REF	Clock output Reference	
5	REF	Clock output Reference	
6	2xREF	Clock output, 2x Reference	
7	VDD	3.3V Supply	
8	OE	Output Enable (weak pull-up)	

Functional Description

The CY2300 is a 4-output 3.3V phase-aligned system clock designed to distribute high-speed clocks in PC, workstation, datacom, telecom, and other high-performance applications.

The part allows the user to obtain 1/2x, 1x, 1x and 2x REFIN output frequencies on respective output pins.

The part has an on-chip PLL which locks to an input clock presented on the REFIN pin. The input-to-output skew is guaranteed to be less than ± 200 ps, and output-to-output skew is guaranteed to be less than 200 ps.

Multiple CY2300 devices can accept the same input clock and distribute it in a system. In this case, the skew between the outputs of two devices is guaranteed to be less than 400 ps.

The CY2300 is available in commercial and industrial temperature ranges.

Maximum Ratings

Supply voltage to Ground Potential	–0.5V to +7.0V
DC Input Voltage (Except Ref)	–0.5V to V _{DD} + 0.5V
DC Input Voltage REF	–0.5 to 7V
Storage Temperature	–65°C to +150°C
Junction Temperature	150°C
Static Discharge Voltage (per MIL-STD-883, Method 3015)	>2000V

Operating Conditions for CY2300SC Commercial Temperature Devices

Parameter	Description	Min.	Max.	Unit
V _{DD}	Supply Voltage	3.0	3.6	V
T _A	Operating Temperature (Ambient Temperature)	0	70	°C
C _L	Load Capacitance, Fout < 133.33 MHz		18	pF
	Load Capacitance,133.33 MHz < Fout < 166.67 MHz		12	pF
C _{IN}	Input Capacitance		7	pF
t _{PU}	Power-up time for all VDD's to reach minimum specified voltage (power ramps must be monotonic)	0.05	50	ms

Electrical Characteristics for CY2300SC Commercial Temperature Devices

Parameter		Description	Min.	Max.	Unit
V _{IL}	Input LOW Voltage			0.8	V
V _{IH}	Input HIGH Voltage		2.0		V
I _{IL}	Input LOW Current	V _{IN} = 0V		100	μΑ
I _{IH}	Input HIGH Current	$V_{IN} = V_{DD}$		50	μΑ
V _{OL}	Output LOW Voltage ^[2]	I _{OL} = 8 mA		0.4	V
V _{OH}	Output HIGH Voltage ^[2]	I _{OH} = –8 mA	2.4		V
I _{DD}	Supply Current	Unloaded outputs, REFIN = 66 MHz		45	mA
		Unloaded outputs, REFIN = 33 MHz		32	mA
		Unloaded outputs, REFIN = 20 MHz		18	mA

Notes:

1. Weak pull-down on all outputs.

Document #: 38-07252 Rev. *B

^{2.} Parameter is guaranteed by design and characterization. It is not 100% tested in production.

Switching Characteristics for CY2300SC Commercial Temperature Devices

Parameter	Name	Test Conditions	Min.	Тур.	Max.	Unit
1/t ₁	Output Frequency	18-pF load	10		133.33	MHz
		12-pF load			166.67	MHz
	Duty Cycle ^[3] = $t_2 \div t_1$	Measured at V _{DD} /2	40	50	60	%
t ₃	Rise Time ^[3]	Measured between 0.8V and 2.0V			1.20	ns
t ₄	Fall Time ^[3]	Measured between 0.8V and 2.0V			1.20	ns
t ₅	Output to Output Skew on rising edges ^[3]	All outputs equally loaded Measured at V _{DD} /2			200	ps
t ₆	Delay, REFIN Rising Edge to Output Rising Edge ^[3]	Measured at V _{DD} /2 from REFIN to any output			±200	ps
t ₇	Device to Device Skew ^[3]	Measured at V _{DD} /2 on the 1/2xREF pin of devices (pin 1)			400	ps
t _J	Period Jitter ^[3]	Measured at Fout=133.33 MHz, loaded outputs, 18-pF load			±175	ps
t _{LOCK}	PLL Lock Time ^[3]	Stable power supply, valid clocks presented on REFIN			1.0	ms

Operating Conditions for CY2300SI Industrial Temperature Devices

Parameter	Description	Min.	Max.	Unit
V_{DD}	Supply Voltage	3.0	3.6	V
T _A	Operating Temperature (Ambient Temperature)	-40	85	°C
C _L	Load Capacitance, Fout < 133.33 MHz		15	pF
	Load Capacitance,133.33 MHz < Fout < 166.67MHz		10	pF
C _{IN}	Input Capacitance		7	pF
t _{PU}	Power-up time for all VDD's to reach minimum specified voltage (power ramps must be monotonic)	0.05	50	ms

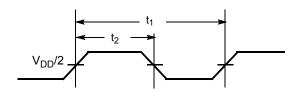
Electrical Characteristics for CY2300SI Industrial Temperature Devices

Parameter	Description	Test Conditions	Min.	Max.	Unit
V _{IL}	Input LOW Voltage			0.8	V
V _{IH}	Input HIGH Voltage		2.0		V
I _{IL}	Input LOW Current	V _{IN} = 0V		100	μΑ
I _{IH}	Input HIGH Current	$V_{IN} = V_{DD}$		50	μΑ
V _{OL}	Output LOW Voltage ^[2]	I _{OL} = 8 mA		0.4	V
V _{OH}	Output HIGH Voltage ^[2]	I _{OH} = –8 mA	2.4		V
I _{DD}	Supply Current	Unloaded outputs, REFIN = 66 MHz		48	mA
		Unloaded outputs, REFIN = 33 MHz		35	mA
		Unloaded outputs, REFIN = 20 MHz		20	mA

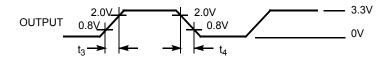
Note:

Document #: 38-07252 Rev. *B Page 3 of 7

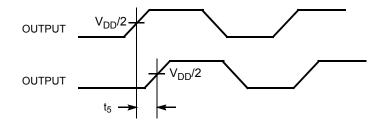
^{3.} All parameters are specified with equally loaded outputs.



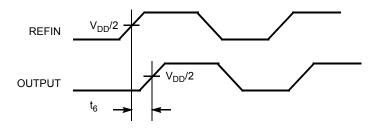
Switching Characteristics for CY2300SI Industrial Temperature Devices

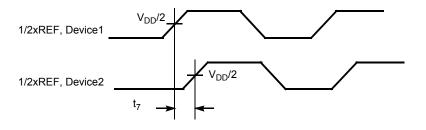

Parameter	Name	Test Conditions	Min.	Тур.	Max.	Unit
1/t ₁	Output Frequency	15-pF load	10		133.33	MHz
		10-pF load			166.67	MHz
	Duty Cycle ^[3] = $t_2 \div t_1$	Measured at V _{DD} /2	40	50	60	%
t ₃	Rise Time ^[3]	Measured between 0.8V and 2.0V			1.20	ns
t ₄	Fall Time ^[3]	Measured between 0.8V and 2.0V			1.20	ns
t ₅	Output to Output Skew on rising edges ^[3]	All outputs equally loaded Measured at V _{DD} /2			200	ps
t ₆	Delay, REFIN Rising Edge to Output Rising Edge ^[3]	Measured at V _{DD} /2 from REFIN to any output			±200	ps
t ₇	Device to Device Skew ^[3]	Measured at V _{DD} /2 on the 1/2xREF pin of devices (pin 1)			400	ps
t _J	Period Jitter ^[3]	Measured at Fout=133.33 MHz, loaded outputs, 15-pF load			±175	ps
t _{LOCK}	PLL Lock Time ^[3]	Stable power supply, valid clocks presented on REFIN			1.0	ms

Switching Waveforms


Duty Cycle Timing

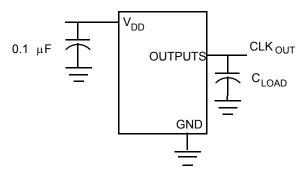
All Outputs Rise/Fall Time


Output-Output Skew



Switching Waveforms

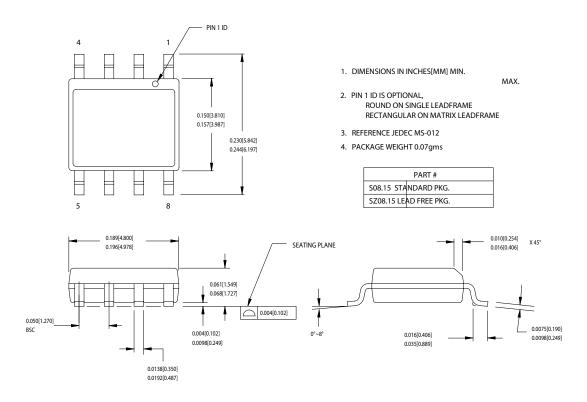
Input-Output Propagation Delay



Device-Device Skew

Test Circuits

Test Circuit # 1



Ordering Information

Ordering Code	Package Type	Operating Range
CY2300SC	8-pin 150-mil SOIC	Commercial
CY2300SC	8-pin 150-mil SOIC - Tape and Reel	Commercial
CY2300SI	8-pin 150-mil SOIC	Industrial
CY2300SI	8-pin 150-mil SOIC - Tape and Reel	Industrial
Lead Free		·
CY2300SXC	8-pin 150-mil SOIC	Commercial
CY2300SXCT	8-pin 150-mil SOIC - Tape and Reel	Commercial
CY2300SXI	8-pin 150-mil SOIC	Industrial
CY2300SXIT	8-pin 150-mil SOIC - Tape and Reel	Industrial

Package Drawing and Dimensions

8-lead (150-Mil) SOIC S8

51-85066-*C

Document Title: CY2300 Phase-Aligned Clock Multiplier Document Number: 38-07252						
REV. ECN NO. Issue Orig. of Change Description of Change						
**	110517	01/07/02	SZV	Change from Spec number: 38-01039 to 38-07252		
*A	121854	12/14/02	RBI	Power up requirements added to Operating Conditions Information		
*B	246829	See ECN	RGL	Added Lead Free Devices		