

Current Transducer HX 03 .. 50-P/SP2

 $I_{PN} = 3..50 A$

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electric	Electrical data					
Primary nomina r.m.s. current	Primary current measuring range $\mathbf{I}_{p}(A)^{1)}$	Primary Conductor Diameter x Turns (mm)	Туре			
3 5 10 15 20 25 50	±9 ±15 ±30 ±45 ±60 ±75 ±150	±15 0.8d x 12T ±30 1.1d x 6T ±45 1.4d x 4T ±60 1.6d x 3T ±75 1.6d x 2T		92 92 92 92 92 92 92		
V _{OUT} R _{OUT} R _U V _C I _C V _d V _e	Output voltage @ ± I _{PN} , R _L = Output impedance Load resistance Supply voltage (± 5 %) Current consumption R.m.s. voltage for AC isolat R.m.s. voltage for partial di at 10pC Impulse withstand voltage, 1	$V_{OE} \pm 0.625$ < 50 ≥ 2 +12+15 < 15 n > 3 ≥ 1 ≥ 6	V Ω kΩ V mA kV			

Accuracy-Dynamic performance data						
X	Accuracy @ I_{PN} , $T_A = 25^{\circ}C$ (without offset)		< ± 1	% of I _{PN}		
\mathbf{e}_{\perp}	Linearity (0 ± I _{PN})		$< \pm 1$	% of I _{PN}		
$\mathbf{e}_{_{CE}}$	Electrical offset voltage, $T_A = 25^{\circ}C$		+2.5V±50 mV			
V _{OH}	Hysteresis offset voltage $\hat{\mathbb{Q}} _{\mathbb{P}} = 0$;					
0	after an excursion of 3 x I _{PN}		$< \pm 10$	mV		
ν _{οτ} τ ce _e	Thermal drift of V _{OE}	max.	± 1.5	mV/K		
TCe _G	Thermal drift of the gain (% of reading)		± 0.1	%/K		
t,	Response time @ 90% of I _p		≤ 3	μs		
f	Frequency bandwidth (-3 dB) ²⁾		50	kHz		

General data							
T _A T _S m	Ambient operating temperature Ambient storage temperature Mass Min. internal creepage distance/clearance Isolation material group Standards	- 25 + 85 - 25 + 85 8 ≥ 5.5 I EN50178	°C °C g mm				

Notes : 1) With $\mathbf{R}_1 = 2k\Omega$

Features

- Galvanic isolation between primary and secondary circuit
- Hall effect measuring principle
- Isolation voltage 3000V
- Low power consumption
- Extended measuring range (3x I_{PN})
- Single supply from +12V to +15V
- Material according to UL94-V0

Advantages

- Low insertion losses
- Easy to mount with automatic handling system
- Small size and space saving
- Only one design for wide current ratings range
- High immunity to external interference.

Applications

- Switched Mode Power Supplies (SMPS)
- AC variable speed drives
- Uninterruptible Power Supplies (UPS)
- Electrical appliances
- Battery supplied applications
- DC motor drives

030806/3

LEM Components www.lem.com

²⁾ Small signal only to avoid excessive heating of the magnetic core

HX 03 .. 50-P/SP2 (in mm) **HX 03...25-P/SP2**

HX 50-P/SP2

Terminal Pin Identification

1.....0V

2.....0V

3.....+12V to +15V

4.....Output

5.....Primary input Current(+)

6.....Primary input Current(-)

Primary conductor diametérdimension

нх	03-P/ SP2	05-P/ SP2	10-P/ SP2	15-P/ SP2	20-P/ SP2	25-P/ SP2	50-P/ SP2
d	0.6	0.8	1.1	1.4	1.6	1.6	1.2x6.3

Secondary pins dimension

0.5x0.25

Specifications subject to change without notice.