

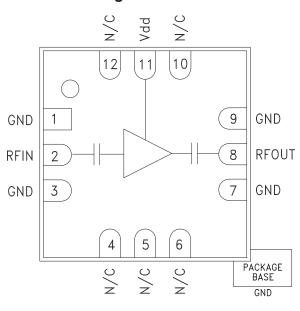
Typical Applications

The HMC441LC3B is ideal for use as a medium power amplifier for:

- Point-to-Point Radios
- Point-to-Multi-Point Radios & VSAT
- LO Driver for HMC Mixers
- Military EW & ECM

Features

Gain: 14 dB


Saturated Output Power: +21.5 dBm @ 27% PAE

Single Positive Supply: +5V @ 90 mA

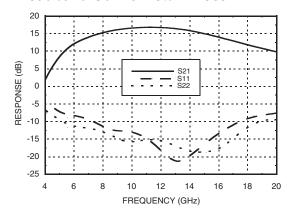
50 Ohm Matched Input/Output

12 Lead Ceramic 3x3mm SMT Package: 9mm²

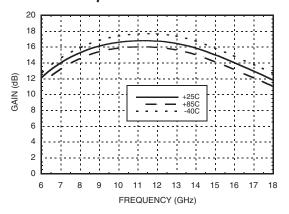
Functional Diagram

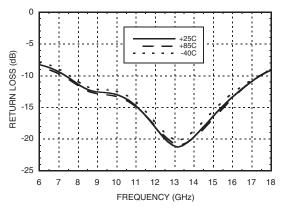
General Description

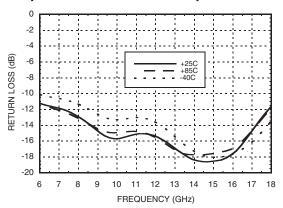
The HMC441LC3B is an efficient GaAs PHEMT MMIC Medium Power Amplifier housed in a leadless RoHS compliant SMT package. Operating between 6 and 18 GHz, the amplifier provides 14 dB of gain, +21.5 dBm of saturated power and 27% PAE from a +5V supply. This 50 Ohm matched amplifier does not require any external components and operates from a single positive supply, making it an ideal linear gain block or driver for HMC SMT mixers. The HMC441LC3B is compatible with high volume surface mount manufacturing techniques, and the I/Os are DC blocked for further ease of integration.

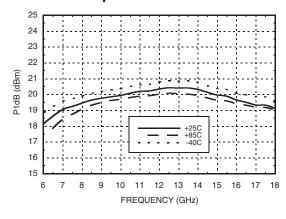

Electrical Specifications, $T_A = +25^{\circ}$ C, Vdd = +5V

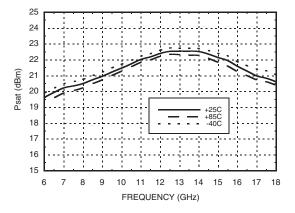
Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range	6.0 - 8.5		8.5 - 12.5		12.5 - 14.0		14.0 - 18.0		GHz				
Gain	10	14		13	17		14	17		10	14		dB
Gain Variation Over Temperature		0.015	0.02		0.015	0.02		0.015	0.02		0.015	0.02	dB/ °C
Input Return Loss		10			13			20			13		dB
Output Return Loss		12			15			17			14		dB
Output Power for 1 dB Compression (P1dB)	16	19		17	20		17	20		17	20		dBm
Saturated Output Power (Psat)		20			21.5			22.5			21.5		dBm
Output Third Order Intercept (IP3)		30			32			32			32		dBm
Noise Figure		4.5			4.5			4.5			4.5		dB
Supply Current (Idd)		90	115		90	115		90	115		90	115	mA



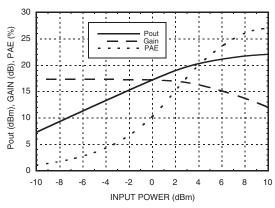

Broadband Gain & Return Loss

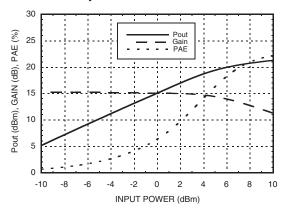

Gain vs. Temperature

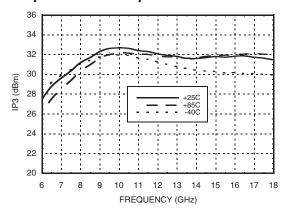

Input Return Loss vs. Temperature

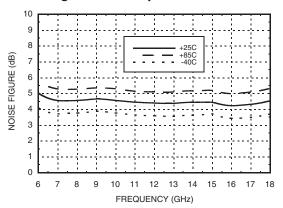

Output Return Loss vs. Temperature

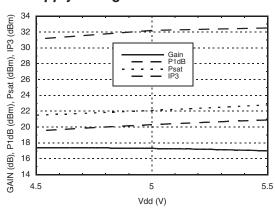
P1dB vs. Temperature

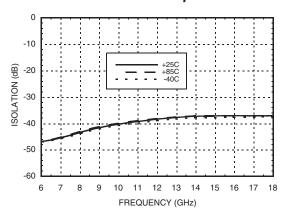

Psat vs. Temperature




Power Compression @ 11 GHz


Power Compression @ 15 GHz


Output IP3 vs. Temperature

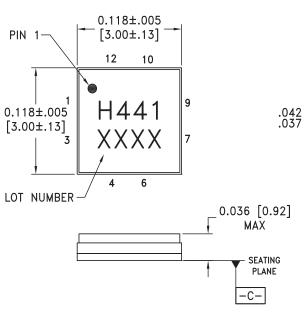

Noise Figure vs. Temperature

Gain, Power & Output IP3 vs. Supply Voltage @ 11 GHz

Reverse Isolation vs. Temperature

Absolute Maximum Ratings

Drain Bias Voltage (Vdd)	+6 Vdc		
RF Input Power (RFIN)(Vdd = +5 Vdc)	+15 dBm		
Channel Temperature	175 °C		
Continuous Pdiss (T = 85 °C) (derate 6.8 mW/°C above 85 °C)	0.61 W		
Thermal Resistance (channel to ground paddle)	147 °C/W		
Storage Temperature	-65 to +150 °C		
Operating Temperature	-40 to +85 °C		


Typical Supply Current vs. Vdd

Vdd (V)	Idd (mA)				
+5.5	92				
+5.0	90				
+4.5	88				

Note: Amplifier will operate over full voltage range shown above

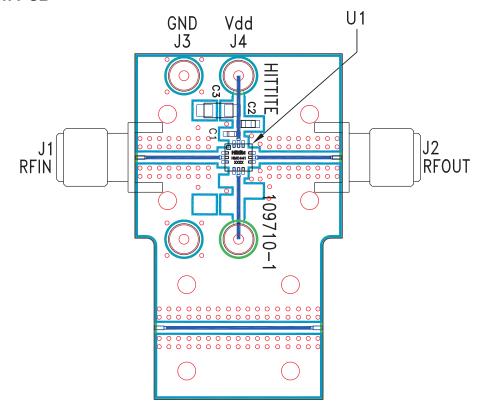
Outline Drawing

NOTES:

- PACKAGE BODY MATERIAL: ALUMINA
- 2. LEAD AND GROUND PADDLE PLATING: GOLD FLASH OVER Ni.
- 3. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 3, 7, 9	GND	Package bottom must also be connected to RF/DC ground	⊖ GND =
2	RFIN	This pin is AC coupled and matched to 50 Ohms.	RFIN O——
4 - 6 10, 12	N/C	This pin may be connected to RF/DC ground. Performance will not be affected.	
8	RFOUT	This pin is AC coupled and matched to 50 Ohms.	—
11	Vdd	Power Supply Voltage for the amplifier. External bypass capacitors are required.	Vdd


Application Circuit

Component	Value			V	dd		
C1	100 pF			1	9		
C2	1,000 pF						
C3	2.2 μF			C1=	C2=	C3==	
	RFII	V	- 2	=	1	8	RFOUT

Evaluation PCB

List of Materials for Evaluation PCB 109712 [1]

Item	Description	
J1 - J2	PCB Mount SMA Connector	
J3 - J4	DC Pin	
C1	100 pF Capacitor, 0402 Pkg.	
C2	1000 pF Capacitor, 0603 Pkg.	
C3	2.2 µF Capacitor, Tantalum	
U1	HMC441LC3B Amplifier	
PCB [2]	109710 Evaluation PCB, 10 mils	

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Rogers 4350