General Description

The DS1091L is a low-cost clock generator that is factorytrimmed to output frequencies from 130 kHz to 66.6 MHz with a nominal accuracy of $\pm 0.25 \%$. The device can also produce a center- or down-dithered spread-spectrum output with pin-selectable dither magnitude and rate. Assembled in an 8-pin $\mu \mathrm{MAX}$ package, the DS1091L is designed to operate with a 3.0 V to 3.6 V power supply over the automotive temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$).

Applications

Automotive Infotainment
POS Terminals
LCD Displays
Printers
Industrial Control

- Spread-Spectrum Clock Output from 130kHz to 66.6 MHz
- Operating Temperature Range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Accuracy of $\pm 1.75 \%$ Across Temperature and Voltage
- Factory Trimmed
- Center-Dithered (DS1091LA) or Down-Dithered (DS1091LB) Spread-Spectrum Output
- Pin-Selectable Center-Dither Magnitude of 0\%, $\pm 1 \%, \pm 2 \%$, or $\pm 4 \%$
- Pin-Selectable Down-Dither Magnitude of 0\%, -2\%, -4\%, or -8\%
- Pin-Selectable Dither Rate
- 3.0V to 3.6V Supply Operation
- Lead-Free 8-Pin μ MAX Package

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE	SPREAD SPECTRUM	OUTPUT FREQUENCY (MHz)
DS1091LUA +027	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	Center	27.0
DS1091LUA +033	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	Center	33.3
DS1091LUA +066	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	Center	66.6
DS1091LUA +xxx	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	Center	Custom (Contact Factory)
DS1091LUB +027	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	Down	27.0
DS1091LUB +033	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	Down	33.3
DS1091LUB +066	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	Down	66.6
DS1091LUB $+x x x$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	Down	Custom (Contact Factory)

+Denotes lead-free package.
xxx Denotes factory-programmed custom frequencies.
Email Custom_EconOscillators_Info@dalsemi.com for information/questions concerning custom frequencies.

Typical Operating Circuit

Pin Configuration

Automotive Temperature Range Spread-Spectrum Econoscillator

ABSOLUTE MAXIMUM RATINGS

Voltage on $V_{C C}$ Relative to Ground....................... 0.5 V to +6.0 V
Voltage on DR, SELO, SEL1 Relative
to Ground**.. 0.5 V to ($\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$)
Operating Temperature Range
.$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Soldering Temperature.
\qquad
*This voltage must not exceed 6.0V.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

($\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	$V_{C C}$	(Note 1)	3.0	3.3	3.6	V
High-Level Input Voltage (SELO, SEL1, DR)	V_{IH}		$0.7 \times$	$\mathrm{V}_{\mathrm{CC}}+$	V	
Low-Level Input Voltage (SELO, SEL1, DR)			V_{CC}	0.3		

DC ELECTRICAL CHARACTERISTICS

($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}$ to +3.6 V , unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
High-Level Output Voltage (OUT)	V OH	$\mathrm{IOH}=-4 \mathrm{~mA}, \mathrm{VCC}=3.0 \mathrm{~V}$	2.4		V
Low-Level Output Voltage (OUT)	VOL	$\mathrm{IOL}=4 \mathrm{~mA}$		0.4	V
High-Level Input Current (SELO, SEL1, DR)	IIH	$V_{C C}=3.6 \mathrm{~V}$		1	$\mu \mathrm{A}$
Low-Level Input Current (SELO, SEL1, DR)	IIL	$\mathrm{V}_{\text {IL }}=0$	-1		$\mu \mathrm{A}$
Supply Current (Active)	ICC	(Note 2)		16	mA

AC ELECTRICAL CHARACTERISTICS

($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}$ to +3.6 V , unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Frequency Range	fout	(Note 3)	0.130		66.6	MHz
Output Center Frequency Tolerance	Δ fout	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.25	0	+0.25	\%
		Across T_{A} and V_{CC}	-1.75		+1.75	
		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, across $\mathrm{V}_{C C}$	-1.2		+1.2	
Power-Up Time	tpu	(Note 4)			0.1	ms
Load Capacitance	CL			15	50	pF

\qquad

Automotive Temperature Range Spread-Spectrum Econoscillator

AC ELECTRICAL CHARACTERISTICS (continued)

($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}$ to +3.6 V .)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Duty Cycle		< 33.3MHz (Note 3)		50		\%
		$\geq 33.3 \mathrm{MHz}$ (Note 3)	40		60	
Jitter (RMS), 50MHz				0.3		\%

Note 1: All voltages are referenced to ground. Currents entering the IC are specified positive and currents exiting the IC are negative.
Note 2: Supply current measured with $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, fouT $=66.6 \mathrm{MHz}$, no dither.
Note 3: No dither.
Note 4: Guaranteed by design.
Note 5: For aging characteristics, contact factory.

Typical Operating Characteristics

$\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}\right.$, unless otherwise noted.)

Automotive Temperature Range Spread-Spectrum Econoscillator

Typical Operating Characteristics (continued) $\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}\right.$, unless otherwise noted. $)$

Pin Description

$\boldsymbol{\mu}$ PIN	NAME	
$\boldsymbol{\mu}$ MAX8		FUNCTION
1	OUT	
2	VCC	Supply Voltage
3	GND	Ground
4	SEL1	Spread Spectrum Dither Magnitude Select Inputs. Selects dither magnitude (see Table 1).
5	SELO	
6,7	N.C.	No Connection
8	DR	Spread-Spectrum Dither Rate Selector. Selects dither rate (see Table 2).

\qquad

Automotive Temperature Range Spread-Spectrum Econoscillator

Block Diagram

WHERE f mosc IS THE MASTER OSCILLATOR FREQuENCY.

Detailed Description
The DS1091L is a clock generator that is capable of output frequencies from 130 kHz to 66.6 MHz over the full automotive temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$. The device also is capable of producing a spreadspectrum (dithered) square-wave output using four pinselectable dither percentages. Both center (DS1091LA) and down (DS1091LB) dithering options are available. The device also features two selectable dither rates.
The DS1091L is shipped from the factory programmed to a customer-specified frequency.

Spread Spectrum

The DS1091L has the ability to reduce radiated emission peaks. The dither percentage is controlled by the state of the SELO and SEL1 pins. The output frequency can be dithered at $0 \%, \pm 1 \%, \pm 2 \%$, and $\pm 4 \%$, centered around the programmed frequency (for the DS1091LB this can be down dithered by $0 \%,-2 \%,-4 \%$, and -8%).
The two select pins SELO and SEL1 provide a means of selecting the dither magnitudes as follows:
A triangle wave generator injects a control signal into the master oscillator to dither its output. The dither rate is a function of the output frequency, fout as well as the setting of the DR pin (see the equation below). Figure 1 shows a plot of the output frequency versus time.

$$
\text { DITHERRATE }=\frac{\text { fout }}{2^{n}}
$$

where n is defined in Table 2 as a function of output frequency. For example, for an output frequency of 27.0 MHz , the dither rate would be 13.2 kHz for $\mathrm{DR}=0$ and 6.6 kHz for $\mathrm{DR}=1$.

Table 1.

SEL1	SELO	DITHER MAGNITUDE	
LOGIC LEVEL	LOGIC LEVEL	DS1091LA	DS1091LB
0	0	No Dither	No Dither
0	1	$\pm 1 \%$	-2%
1	0	$\pm 2 \%$	-4%
1	1	$\pm 4 \%$	-8%

Table 2.

OUTPUT FREQUENCY fout (MHz)	n		
fout (min)	fout (max)	DR = LOGIC LEVEL 1	DR = LOGIC LEVEL 0
0.130	0.260	4	5
0.261	0.521	5	6
0.522	1.042	6	7
1.043	2.083	7	8
2.084	4.167	8	9
4.168	8.333	9	10
8.334	16.667	10	11
16.668	33.333	11	12
33.334	66.667	12	13

Automotive Temperature Range Spread-Spectrum Econoscillator

Figure 1A. Center Dithered

Power-Up

Upon the application of power, the DS1091L output is held in the low state until tpu has elapsed. This removes any possibility of erroneous output transitions during initial power-up.

DS1091L Frequency Spreading Profile as a Function of Dither \%

Figure 1B. Down Dithered

Application Information

Power-Supply Decoupling
To achieve best results, it is highly recommended that decoupling capacitors are used on the IC power-supply pins. Typical values of decoupling capacitors are $0.01 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$. Use a high-quality, ceramic, surface-mount capacitor, and mount it as close as possible to the VCC and GND pins of the IC to minimize lead inductance.

Requesting Custom Frequencies
Email Custom_EconOscillators_Info@dalsemi.com for information/questions concerning custom frequencies.

Chip Topology

TRANSISTOR COUNT: 4887
SUBSTRATE CONNECTED TO GROUND

Package Information

For the latest package outline information, go to www.maxim-ic.com/DallasPackInfo.
\qquad

