

AWT6321

HELP2[™] Dual-band Cellular/PCS CDMA 3.4 V Linear Power Amplifier Module Data Sheet - Rev 2.1

InGaP HBT TechnologyHigh Efficiency:19 % @ +16 dBm

19 % @ +16 dBm 39 % @ +28 dBm

FEATURES

- Low Quiescent Current: 15 mA
- Internal Voltage Regulation
- Common VMODE Control Line
- Simplified Vcc Bus PCB routing
- · Reduced External Component Count
- Low Profile Surface Mount Package: 1 mm
- RoHS Compliant Package, 250 °C MSL-3

APPLICATIONS

 Dual-band Cellular/PCS CDMA Wireless Handsets

PRODUCT DESCRIPTION

The AWT6321 addresses the demand for increased integration in dual-band handsets for North American CDMA network deployments. The small footprint 3 mm x 5 mm x 1 mm surface mount RoHS compliant package contains independent RF PA paths to ensure optimal performance in both frequency bands, while achieving a 25% PCB space savings compared with solutions requiring two single-band PAs. The package pinout was chosen to enable handset manufacturers to easily route Vcc to both power amplifiers and simplify control with a common VMODE pin. The device is manufactured on an advanced InGaP HBT MMIC technology offering state-of-the-art reliability, temperature stability, and ruggedness. The AWT6321 is part of ANADIGICS' High-Efficiency-at-Low-Power (HELP™) family of CDMA power amplifiers, which deliver low quiescent currents and significantly greater efficiency without a costly external DAC or DC-DC converter. Through selectable bias modes, the AWT6321 achieves optimal efficiency across different output power levels, specifically at low- and midrange power levels where the PA typically operates, thereby dramatically increasing handset talk-time and standby-time. Its built-in voltage regulator eliminates the need for external switches. The 3 mm x 5 mm x 1 mm surface mount package incorporates matching

networks optimized for output power, efficiency and linearity in a 50 Ω system.

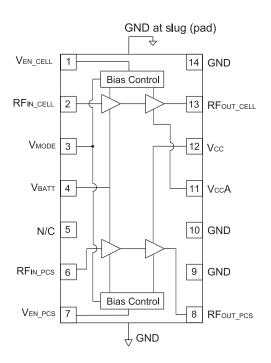


Figure 1: Block Diagram

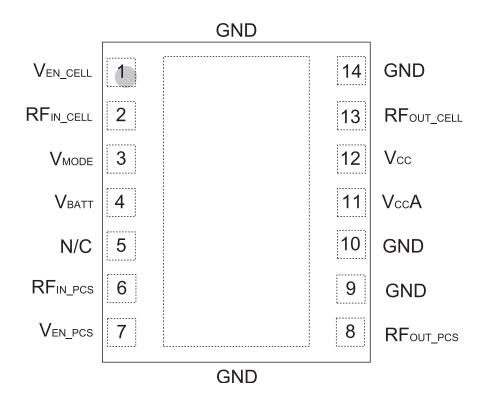


Figure 2: Pinout

Table 1: Pin Description

PIN	NAME	DESCRIPTION			
1	VEN_CELL	Enable Voltage for Cell Band			
2	RF _{IN_CELL}	RF Input for Cell Band			
3	V _{MODE}	Mode Control Voltage for Cell and PCS Bands			
4	V_{BATT}	Battery Voltage			
5	N/C	No Connection			
6	RF _{IN_PCS}	RF Input for PCS Band			
7	V _{EN_PCS}	Enable Voltage for PCS Band			
8	RF _{OUT_PCS}	RF Output for PCS Band			
9	GND	Ground			
10	GND	Ground			
11	VccA	Battery Voltage A			
12	Vcc	Supply Voltage			
13	RFOUT_CELL	RF Output for Cell Band			
14	GND	Ground			

2

ELECTRICAL CHARACTERISTICS

Table 2: Absolute Minimum and Maximum Ratings

PARAMETER	MIN	MAX	UNIT
Supply Voltage (VBATT, Vcc, VccA)	0	+5	V
Mode Control Voltage (VMODE)	0	+3.5	V
Enable Voltage (Ven_cell, Ven_pcs)	0	+3.5	V
RF Input Power (Pℕ)	-	+10	dBm
Storage Temperature (Tstg)	-40	+150	°C

Stresses in excess of the absolute ratings may cause permanent damage. Functional operation is not implied under these conditions. Exposure to absolute ratings for extended periods of time may adversely affect reliability.

Table 3: Operating Ranges

rane or operating ranges						
PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS	
Operating Frequency (f)	824 1850	1	849 1910	MHz	Cellular PCS	
Supply Voltage (Vcc and VBATT)	+3.2	+3.4	+4.2	V		
Enable Voltage (V _{EN})	+2.2	+2.4	+3.1 +0.5	V	PA "on" PA "shut down"	
Mode Control Voltage (V _{MODE})	+2.2	+2.4	+3.1 +0.5	V	Low Bias Mode High Bias Mode	
Cellular RF Output Power (Роот) CDMA	+27.5 (1)	+28.0	-	dBm		
PCS RF Output Power (Pout) CDMA	+27.5 (1)	+28.0	-	dBm		
Case Temperature (Tc)	-30	-	+85	°C		

The device may be operated safely over these conditions; however, parametric performance is guaranteed only over the conditions defined in the electrical specifications.

(1) For operation at Vcc = +3.2 V, Pout is derated by 0.5 dB.

Table 4: Electrical Specifications - Cellular Band (Tc = +25 °C, V_{BATT} = V_{CC} = +3.4 V, V_{ENABLE} = +2.4 V, 50 Ω system, IS-95 uplink waveform)

PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS
Gain	24.0 15.0 15.5	26.0 16.5 17.0	29.0 19.0 20.0	dB	POUT = +28 dBm, VMODE = 0 V POUT = +16 dBm, VMODE = +2.4 V POUT = +17 dBm, VMODE = +2.4 V, Vcc = +3.7 V
Adjacent Channel Power at ±885 kHz offset (1) Primary Channel BW = 1.23 MHZ Adjacent Channel BW = 30 kHz		-50 -53 -53	-46.5 -47 -47	dBc	POUT = +28 dBm, VMODE = 0 V POUT = +16 dBm, VMODE = +2.4 V POUT = +17 dBm, VMODE = +2.4 V, Vcc = +3.7 V
Adjacent Channel Power at ±1.98 MHz offset (1) Primary Channel BW = 1.23 MHZ Adjacent Channel BW = 30 kHz		-65 -60	-57 -57	dBc	POUT = +28 dBm, VMODE = 0 V POUT = +16 dBm, VMODE = +2.4 V
Power-Added Efficiency (1)	36 18	39 22	1 1	%	POUT = +28 dBm, VMODE = 0 V POUT = +16 dBm, VMODE = +2.4 V
Quiescent Current (lcq)	-	14	20	mA	V _{MODE} = +2.4 V, Low Bias
Enable Current	-	0.4	0.8	mA	through Ven pin, VMODE = +2.4 V
Battery Current	-	2.5	5	mA	through VBATT pin, VMODE = +2.4 V
Mode Control Current	-	0.75	1.0	mA	through VMODE pin, VMODE = +2.4 V
Leakage Current	-	<1	5	μΑ	Vcc = +4.2 V, Ven = 0 V, Vmode = 0 V
Noise in Receive Band	-	-133	-131	dBm/Hz	869 MHz to 894 MHz
Harmonics 2fo 3fo, 4fo	1 1	-42 -50	-30 -30	dBc	
Input Impedance	-	-	2:1	VSWR	
Spurious Output Level (all spurious outputs)	-	-	-65	dBc	POUT < +28 dBm In-band Load VSWR < 5:1 Out-of-band Load VSWR < 10:1 Applies over all operating conditions
Load mismatch stress with no permanent degradation or failure	8:1	ī	-	VSWR	Applies over all operating conditions

Notes:

(1) PAE and ACP limit applies at 836.5 MHz.

Table 5: Electrical Specifications - PCS Band (Tc = +25 °C, VBATT = Vcc = +3.4 V, VENABLE = +2.4 V, 50 Ω system, IS-95 uplink waveform)

PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS
Gain	25.0 12.5 13.0	27.0 14.5 15.5	30.0 17.0 18.0	dB	Pout = +28 dBm, V _{MODE} = 0 V Pout = +16 dBm, V _{MODE} = +2.4 V Pout = +18 dBm, V _{MODE} = +2.4 V, V _{CC} = +3.7 V
Adjacent Channel Power at ±1.25 MHz offset Primary Channel BW - 1.23 MHz Adjacent Channel BW = 30 kHz	1 1 1	-50 -55 -51	-46.5 -47 -47	dBc	Pout = +28 dBm, V _{MODE} = 0 V Pout = +16 dBm, V _{MODE} = +2.4 V Pout = +18 dBm, V _{MODE} = +2.4 V, V _{CC} = +3.7 V
Adjacent Channel Power at ±2.25 MHz offset Primary Channel BW - 1.23 MHz Adjacent Channel BW = 30 kHz	1 1	-63 -61	-57 -57	dBc	P _{OUT} = +28 dBm, V _{MODE} = 0 V P _{OUT} = +16 dBm, V _{MODE} = +2.4 V
Power-Added Efficiency	35.5 15	39 17	1 1	%	P _{OUT} = +28 dBm, V _{MODE} = 0 V P _{OUT} = +16 dBm, V _{MODE} = +2.4 V
Quiescent Current (lcq)	-	14	20	mA	through Vcc pin, V _{MODE} = +2.4 V
Enable Current	-	0.3	0.8	mA	through V _{EN} pin, PA "on"
Mode Control Current	-	0.75	1.0	mA	through V _{MODE} pin, V _{MODE} = +2.4 V
Battery Current	-	3	5	mA	through VBATT pin, VMODE = +2.4 V
Leakage Current	1	<1	5	μΑ	V _{CC} = +4.2 V, V _{EN} = 0 V, V _{MODE} = 0 V
Noise in Receive Band	-	-134	-132	dBm/Hz	1930 MHz to 1990 MHz
Harmonics 2fo 3fo, 4fo	1 1	-43 -55	-30 -30	dBc	
Input Impedance	-	-	2:1	VSWR	
Spurious Output Level (all spurious outputs)	-	-	-65	dBc	Pout < +28 dBm In-band load VSWR < 5:1 Out-of-band load VSWR < 10:1 Applies over all operating ranges
Load mismatch stress with no permanent degradation or failure	8:1	-	-	VSWR	Applies over full operating range

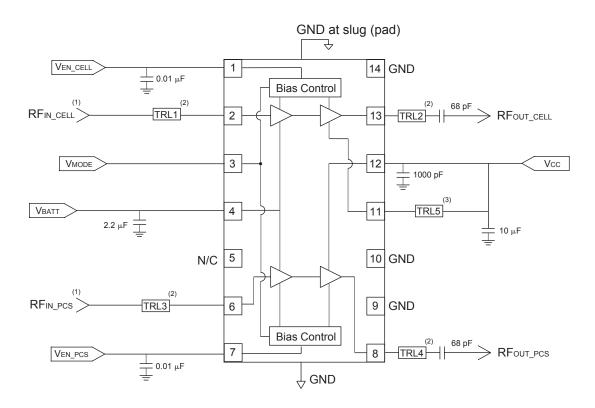
Notes:

^{1.} ACPRs and Efficiency limits at mid-band only.

APPLICATION INFORMATION

To ensure proper performance, refer to all related Application Notes on the ANADIGICS web site: http://www.anadigics.com

Shutdown Mode

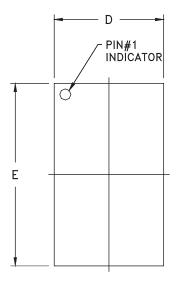

The power amplifier may be placed in a shutdown mode by applying logic low levels (see Operating Ranges table) to the Venable and Vmode voltages.

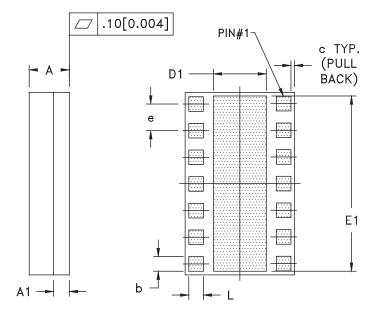
Bias Modes

The power amplifier may be placed in either a Low Bias mode or a High Bias mode by applying the appropriate logic level (see Operating Ranges table) to the V_{MODE} voltages. The Bias Control table lists the recommended modes of operation for various applications.

Table 6: Bias Control

APPLICATION	Pout LEVELS	BIAS MODE	VENABLE	V _{MODE}	Vcc	V BATT
CDMA - low power	<u><</u> +16 dBm	Low	+2.4 V	+2.4 V	3.2 - 4.2 V	≥ 3.2 V
CDMA - high power	> +16 dBm	High	+2.4 V	0 V	3.2 - 4.2 V	≥ 3.2 V
Optional lower Vcc in low power mode	≤ +7 dBm	Low	+2.4 V	+2.4 V	1.5 V	≥ 3.2 V
Shutdown	-	Shutdown	0 V	0 V	3.2 - 4.2 V	<u>></u> 3.2 V




Note

- (1) Add blocking cap if DC voltage is present on input pin.
- (2) TRL should be short and of 50 Ω characteristic impedance.
- (3) TRL 5 should be as long as possible (minimum of 0.1 λ at 800 MHz) and capable of handling 1200 mA current.

Figure 3: Application Circuit

PACKAGE OUTLINE

S _{YMBOL}	М	LLIMETE	RS		NOTE		
Lo ^L	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
Α	0.90	1.00	1.10	0.035	0.039	0.043	_
A1	-	0.35	_	_	0.014	_	_
b	0.37	-	0.57	0.015	-	0.022	3
С	_	0.10	-	-	0.004	-	_
D	2.88	3.00	3.12	0.113	0.118	0.123	_
D1	1.40	_	1.55	0.055	_	0.061	3
Е	4.88	5.00	5.12	0.192	0.197	0.202	_
E1	4.75	-	4.85	0.187	_	0.190	3
е	0.72 BSC			0	.028 BS	C	3
L	0.37	_	0.57	0.015	_	0.022	3

NOTES:

- 1. CONTROLLING DIMENSIONS: MILLIMETERS
- CONTROLLING DIMENSIONS: MILLIMETERS
 UNLESS SPECIFIED TOLERANCE=±0.076[0.003].
 PADS (INCLUDING CENTER) SHOWN UNIFORM SIZE FOR REFERENCE ONLY.
 ACTUAL PAD SIZE AND LOCATION WILL VARY WITHIN MIN. AND MAX. DIMENSIONS ACCORDING TO SPECIFIC LAMINATE DESIGN.
 UNLESS SPECIFIED DIMENSIONS ARE SYMMETRICAL ABOUT CENTER LINES SHOWN.

Figure 4: Package Outline - 14 Pin 3 mm x 5 mm x 1 mm Surface Mount Module

BRAND

NOTES:

1. ANADIGICS LOGO SIZE: NONE

2. PART NUMBER: FOUR DIGIT NUMERICAL 3. WAFER LOT NUMBER: LLLL = LOT NUMBER

NN = WAFER I.D.

4. PIN 1 INDICATOR: LASER DOT

5. B.O.M. # BBB

6. COUNTRY CODE: = TH-for-THAILAND, TW-for-TAIWAN = PH-for-PHILIPPINES, CH-for-CHINA

7. TYPE : ARIAL SIZE : 1.5-PC COLOR : LASER 1.5-POINT

YY - YEAR 8. DATE CODE WW - WORK WEEK

Figure 5: Branding Specification

ORDERING INFORMATION

ORDER	TEMPERATURE	PACKAGE	COMPONENT PACKAGING
NUMBER	RANGE	DESCRIPTION	
AWT6321RM28Q7	-20 °C to +85 °C	RoHS Compliant 14 Pin 3 mm x 5 mm x 1 mm Surface Mount Module	Tape and Reel, 2500 pieces per Reel

ANADIGICS, Inc.

141 Mount Bethel Road Warren, New Jersey 07059, U.S.A.

Tel: +1 (908) 668-5000 Fax: +1 (908) 668-5132

URL: http://www.anadigics.com E-mail: Mktg@anadigics.com

IMPORTANT NOTICE

ANADIGICS, Inc. reserves the right to make changes to its products or to discontinue any product at any time without notice. The product specifications contained in Advanced Product Information sheets and Preliminary Data Sheets are subject to change prior to a product's formal introduction. Information in Data Sheets have been carefully checked and are assumed to be reliable; however, ANADIGICS assumes no responsibilities for inaccuracies. ANADIGICS strongly urges customers to verify that the information they are using is current before placing orders.

WARNING

ANADIGICS products are not intended for use in life support appliances, devices or systems. Use of an ANADIGICS product in any such application without written consent is prohibited.

