Supertex inc.

Advance Information

High Voltage EL Lamp Driver

Features

- ☐ Processed with HVCMOS® technology
- \Box V_{DD} voltage range = 2.7 to 5.5V DC
- ☐ Output load up to 70nF (20 in² for 3.5nF/ in² lamp)
- ☐ Adjustable DC-DC converter frequency
- Continious output voltage regulation control (from 50V to 200V)

Application

- □ Electronic Organizers
- ☐ Handheld Portable Computers
- Display Signs
- □ Portable Instrumentation Equipment

Typical Application Circuit

General Description

The Supertex HV829A/B are high voltage EL lamp driver integrated circuits designed for driving EL lamps of up to 70nF at 1000Hz. The input supply voltage range is from 2.7V to 5.5V. These devices use a single inductor, a high voltage switching FET and a minimum number of passive components. The HV829A/B will supply the EL lamp with an AC square wave with a peak-to-peak voltage of two times the set regulated DC voltage.

The HV829A/B has one internal oscillator and a high voltage EL lamp driver. The frequency for the external switching MOSFET is set by an external resistor connected between the $R_{SW\text{-}osc}$ pin and GND. The EL frequency for the HV829A is equal to the switching frequency divided by 64 where the EL frequency for the HV829B is equal to the switching frequency divided by 128. Gate of the external MOSFET is connected to the Gate pin. An external inductor is connected between the Drain of external MOSFET and V_{DD} pin. A 0.01-2.5 μF capacitor is connected between Cs and ground. The EL lamp is connected between V_A and V_B . The output voltage regulation level is controlled via the V_{REG} pin for dimming and/or conservation of power. The output voltage regulation can be controlled continuously between 50V and 200V depending on the voltage applied to V_{REG} pin (0.75V to 3V).

The switching MOSFET charges the external inductor and discharges it into the capacitor at C_S . The voltage at C_S will start to increase. Once the voltage at C_S reaches a nominal value chosen by the user, the switching MOSFET is turned OFF to conserve power. The outputs V_A and V_B are configured as an H bridge and are switching in opposite states to achieve the AC voltage of +/- VREG voltage across the EL lamp.

09/05/02

Supertex Inc. does not recommend the use of its products in life support applications and will not knowingly sell its products for use in such applications unless it receives an adequate "products liability indemnification insurance agreement." Supertex does not assume responsibility for use of devices described and limits its liability to the replacement of devices determined to be defective due to workmanship. No responsibility is assumed for possible omissions or inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications, refer to the Supertex website: http://www.supertex.com. For complete liability information on all Supertex products, refer to the most current databook or to the Legal/Disclaimer page on the Supertex website.

Ordering Information

Device Output	Output EL Frequency	Package				
	Output LE Frequency	SO-8 w/ Heat Slug	Die			
HV829A	Sw oscillator / 64	HV829ASG	HV829AX			
HV829B	Sw oscillator / 128	HV829BSG	HV829AX			

^{**} Mounted on FR4 board, 25mm x 25mm x 1.57mm.

Absolute Maximum Ratings*

Input Voltage to the external Inductor	+18V
V_{DD}	+7.0V
Output voltage, V _{CS}	05V to +250V
Operating Temperature	-25°C to +85°C
Storage Temperature	-65°C to +150°C
Power Dissipation	1.5W

^{*}Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Suggested Pin Configuration

Electrical Characteristics

 $\textbf{DC Characteristics} \ \, (\text{Over recommended operating conditions unless otherwise specified, T}_{A} = 25^{\circ}\text{C}).$

Symbol	Parameter	Min	Тур	Max	Units	Conditions	
		42	50	58		$V_{REG} = 0.75V$	
\/	Max. output regulation voltage (V _{DD} =2.7 to 5.5V, No load)	90	100	110	V	V _{REG} = 1.5V	
V _{cs}		135	150	165		V _{REG} = 2.25V	
		180	200	220		V _{REG} = 3.0V	
f _{sw}	Inductor switching frequency	20	25	30	KHz		
I _{DDQ}	Quiescent V _{DD} supply current			400	nA	$V_{cs} = 150V, C_{L} = 57nF, R_{sw-osc} = 1M$,	
I _{DD}	Input current going into the V _{DD} pin			400	μA	See Figure 1.	
I _{IN}	Input current including inductor current			195	mA		
	Quiescent supply current (no load)			200	μA	V - 150V P -1M	
INQ	Quiescent supply current (no load)			100	μA	$V_{CS} = 150V, R_{SW-OSC} = 1M$	
		84	100	116		$V_{REG} = 0.75V$	
V _A - V _B	Differential output voltage across the lamp	180	200	220	V	V _{REG} = 1.5V	
		270	300	330		V _{REG} = 2.25V	
		380	400	440		V _{REG} = 3.0V	

Recommended Operating Conditions

f _{sw}	Inductor switching frequency	51.2	64	76.8	KHz	R _{SW-osc} =400 , C _L =70nF	
f _{EL}	Output drive frequency	0.8	1.0	1.2	NUZ		
t _R	Output rise time	235	300	365	us	V _{CS} =200V, R _{SW-osc} =400 , C _L =70nF,	
t _F	Output fall time	235	300	365	μδ	f _{EL} =1KHz	
t _{r-Gate}	Gate rise time		150		ns	C _e =2500pF Gate to GND	
t _{f-Gate}	Gate fall time		50		115	G=2300pF Gate to GND	

Enable/Disable Function Table

V _{IN}	Inductor voltage	3.0		12		
V _{DD}	device supply voltage	2.7		5.5	V	
V _{GATE}	Internal supply voltage	10	12	14		
C _L				70	nF	
T _A	Operating temperature	-25		85	° C	

 $^{^{\}star}$ No $\rm L_{\rm X}$ or $\rm C_{\rm S}$ current when $\rm V_{\rm DD}\!\!=\!\!0V$ or Hi-Z

Description	Input Voltage (V _{DD})	R _{sw-osc}	Outputs $V_{_{\rm A}}$ and $V_{_{\rm B}}$	Gate
Output Disabled	Hi	V _{DD}	Hi-Z	0V
Output Enabled	Hi	GND	Oscillating	Oscillating
IC off	0V	_	Hi-Z	0V

Functional Block Diagram

Figure 1: Typical Application/Test Circuit

