

Chrontel CH7036 RGB/HDMI/LVDS Encoder

FEATURES

- Single channel 18-bit/24-bit LVDS receiver and transmitter support display resolution up to 1366x768
- HDMI encoder supports up to 1080p
- Supports VGA display up to 1080p
- Supports HDMI repeater function
- DDC master for reading EDID
- Supports Hot Plug Detection (HPD) for HDMI/DVI
- Optional HDCP version 1.1 function
- Three 10-bit high speed DACs
- DACs can be switched off through programming internal registers. A separated composite sync is supported
- Monitor connection detection capability. Connection status can be retrieved through device's internal registers
- Pixel-level color enhancement for brightness and contrast (analog RGB only)
- SPDIF audio interface supports up to 20-bit data stream 192kHz/2ch
- Supports I2S digital audio input up to 24-bit data stream (32kHz/2ch, 44.1kHz/2ch, 48kHz/2ch, 88.2kHz/2ch, 96kHz/2ch, 176.4kHz/2ch and 192kHz/2ch)
- On-chip frame buffer allows flexible input LVDS video timing.
- Capable of converting input video frame rate to satisfy external displays' refresh rate requirements
- Advanced scaling engine to upsize/downsize display resolution for HDMI, DVI and analog RGB outputs
- Programmable adaptive de-flickering filter
- Image display rotation supports for HDMI/DVI and analog RGB outputs. The screen display can be rotated 90/180/270 degree or flipped either horizontally or vertically
- Horizontal/vertical position shifting for the VGA display is programmable
- Flexible crystal or oscillator clock input frequency for analog RGB output (2.3MHz – 64MHz). 27 MHz external crystal is recommended for HDMI output.
- IO and SPC/SPD supply voltages from 1.8V to 3.3V
- Programmable power management
- The device's configuration parameters can be programmed through serial port
- Offered in 88-pin QFN package

APPLICATIONS

Netbooks MIDs Tablet PCs Industrial PCs

GENERAL DESCRIPTION

The CH7036 is specifically designed for Consumer Electronics Devices and Personal Computers that require High Definition (HD) Content video playback on the external displays such as HDMI/DVI monitors.

The CH7036's HDMI transmitter is designed to support 1080p HDTV and the HDMI repeater function. For desktop monitors that do not have the HDMI input, the CH7036 has the capability to disable HDMI mode and output DVI signal or analog RGB signal (VGA). To support multi-display, the CH7036 can output either HDM/DVI or Analog RGB signals together with LVDS signal pass-through.

The CH7036's single channel LVDS receiver/transmitter complies with the SPWG specification, a popular LVDS standard used by panel manufacturers. Each input/output LVDS interface is equipped with 4/1 pairs of differential signal buses to support video data and clock. The built-in dithering mechanism can be applied to approximate true 24-bit color video data if system manufacturers use less expensive 18-bit panels. Conversely, if input data is only 18-bit color, the simulation to 24-bit color for high-end TFT LCD is also supported.

The device's LVDS receiver can accept maximum video clock frequency for up to 85MHz or 1366x768 resolution in 24-bit color per pixel. A powerful scaling engine working together with other video processing circuits, will convert the captured LVDS signal stored in the internal SDRAM into High Definition Content video data. The built-in mixer will combine this HD digital RGB signal with decoded audio stream into HDMI format data, which will be serialized for output display by the CH7036 TMDS encoder.

The CH7036 supports both SPDIF and 2-channel I2S digital audio inputs. Its high fidelity audio decoder engine has the capability of sampling audio frequencies for up to 192kHz for 2 channels.

Utilizing its high speed internal frame buffer, the CH7036's scaling engine can increase the flexibility of the screen display. The video enhancement includes resizing the HDMI/DVI and RGB output display resolution, performing Frame Rate Conversion a well as rotating display orientation. Other video fine tuning, such as brightness control or contrast adjustment can be used to improve the display on the analog RGB monitor.

When CH7036 is powered up, its MCU is able to automatically execute the device configuration software in the device's internal memory. When the firmware in the memory is programmed to support EDID communication and HPD, the MCU will toggle DDC bus lines to retrieve the display timing from the HDMI/DVI monitor if HPD is asserted. Furthermore an interrupt signal can be generated by MCU to host while the CH7036's HPD is high.

The CH7036 supports the optional HDCP feature for preventing illegally copy High Definition Contented media.

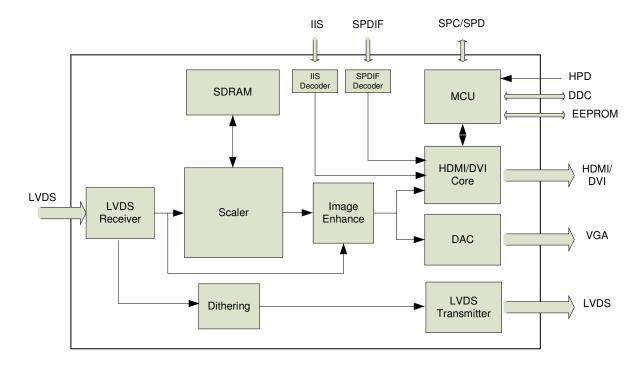


Figure 1: Functional Block Diagram

1.0 PIN-OUT

1.1 Package Diagram

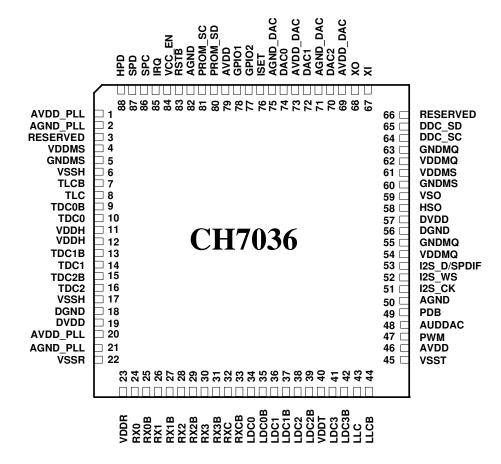


Figure 2: Pin Out

1.2 Pin Description

Table 1: Pin Description

Pin #	Туре	Symbol	Description
3	In	RESERVED	Reserved Pin.
			This pin should be pulled low with a 10 k Ω resistor
7,8	Out	TLCB/TLC	HDMI Clock Outputs
			These pins provide the differential clock output for the HDMI
9,10	Out	TDC0B/TDC0	HDMI Data Channel 0 Outputs
			These pins provide the HDMI differential outputs for data channel 0
13,14	Out	TDC1B/TDC1	HDMI Data Channel 1 Outputs
			These pins provide the HDMI differential outputs for data channel 1
15,16	Out	TDC2B/TDC2	HDMI Data Channel 2 Outputs
			These pins provide the HDMI differential outputs for data channel 2
24,25	In	RX0/RX0B	LVDS Data Channel 0 Inputs
			These pins provide the LVDS differential inputs for data channel 0
26,27	In	RX1/RX1B	LVDS Data Channel 1 Inputs
			These pins provide the LVDS differential inputs for data channel 1
28,29	In	RX2/RX2B	LVDS Data Channel 2 Inputs
			These pins provide the LVDS differential inputs for data channel 2

209-1000-011 Rev. 1.23, 03/24/2011

CHRONTEL

30,31	In	RX3/RX3B	LVDS Data Channel 3 Inputs These pins provide the LVDS differential inputs for data channel 3					
32,33	In	RXC/RXCB	LVDS Clock Inputs These pins provide the LVDS differential input clocks LVDS Data Channel 0 Outputs					
34,35	Out	LDC0/LDC0B						
5 1,55	out		These pins provide the LVDS differential outputs for data channel 0					
36,37	Out	LDC1/LDC1B	LVDS Data Channel 1 Outputs					
)			These pins provide the LVDS differential outputs for data channel 1					
38,39	Out	LDC2/LDC2B	LVDS Data Channel 2 Outputs					
41.40	Out	LDC3/LDC3B	These pins provide the LVDS differential outputs for data channel 2					
41,42	Out	LDC3/LDC3B	LVDS Data Channel 3 Outputs These pins provide the LVDS differential outputs for data channel 3					
43,44	Out	LLC/LLCB	LVDS Clock Outputs					
47	Out	PWM ^[1]	These pins provide the LVDS differential output clocks Backlight Brightness Adjustment					
48	Out	AUDDAC ^[1]	Audio Control Output Pin					
49	Input	PDB	Power Down the Whole Chip					
7 1	T		High: Power on CH7036; Low: Power down CH7036					
51	In	I2S_CK	I2S Clock Signal					
52	In	I2S_WS	I2S Channel Select Signal					
53	In	I2S_D/SPDIF	SPDIF Audio Signal Input.					
			In default, this pin is configured to SPDIF audio signal input					
			I2S Data Input.					
			I2S audio input can be configured through programming CH7036					
58	Out	HSO	registers Analog RGB Horizontal Sync Output					
59	Out	VSO	Analog RGB Vertical Sync Output					
64		DDC_SC ^[2]	Serial Port Clock Output to DDC					
04	In	DDC_SC	This pin functions as the clock bus of the serial port to DDC receiver.					
			This pin value require a pull-up 1.8 k Ω resistor to +5V					
65	In/Out	DDC_SD ^[2]	Serial Port Data to DDC					
			This pin functions as the bi-directional data pin of the serial port to DDC					
			receiver. This pin will require a pull-up 1.8 k Ω Resistor to +5V					
66	In/Out	RESERVED	Reserved Pin.					
67	In	XI	This pin should be floating or pull low with $10 \text{ k}\Omega$ resistor					
07	111		Crystal Input / External Reference Input A parallel resonance crystal should be attached between this pin and					
			XO. However, an external 3.3V CMOS compatible clock can drive the					
			XI Input					
68	Out	XO	Crystal Output					
			A parallel resonance crystal should be attached between this pin and XI /					
			FIN. However, if an external CMOS clock is attached to XI/FIN, XO					
70	Out		should be left open					
70	Out	DAC2	Analog B Output Full swing is up to 0.7V					
72	Out	DAC1	Analog G Output					
= .		D + G ⁰	Full swing is up to 0.7V					
74	Out	DAC0	Analog R Output Full swing is up to 0.7V					
76	In	ISET	Current Set Resistor Input					
10	111	1011	This pin sets the DAC current. A 1.2 k Ω , 1% tolerance resistor should					
		1						
			be connected between this pin and AGND_DAC using short and wide					
		GPIO2	be connected between this pin and AGND_DAC using short and wide traces General Purpose Output Pin					

4

CHRONTEL

CH7036

78	Out	GPIO1	General Purpose Output Pin					
80	In/Out	PROM_SD	Serial Port Data to E2PROM This pin functions as the bi-directional data pin of the serial port to E2PROM receiver. This pin requires a pull-up 5.6 k Ω Resistor to the desired voltage level					
81	In	PROM_SC	Serial Port Clock Output to E2PROM This pin functions as the clock bus of the serial port to E2PROM receiver. This pin requires a pull-up 5.6 k Ω Resistor to the desired voltage level					
83	In	RSTB	Reset Pin Low for reset					
84	In	VCC_EN	Panel Power EnableActive high. When it is low, all the output will be turned off.					
85	Out	IRQ	 Programmed Interrupt Output. Default output 3.3V CMOS level, and this pin could work as open drain structure for other voltages. 					
86	In	SPC	structure for other voltages. Serial Port Clock Output This pin functions as the clock pin of the serial port. External pull-up 6.8 kΩ Resistor is required					
87	In/Out	SPD	Serial Port Data Input / Output This pin functions as the bi-directional data pin of the serial port. External pull-up 6.8 k Ω Resistor is required					
88	In	HPD	Hot Plug Detect This input pin determines whether the HDMI output driver is connected to a HDMI monitor.					
1,20	Power	AVDD_PLL	PLL Power Supply(1.8V)					
4,61	Power	VDDMS	SDRAM Device Power Supply(3.3V)					
11,12	Power	VDDH	HDMI Power Supply(3.3V)					
19,57	Power	DVDD	Digital Power Supply(1.8V)					
23	Power	VDDR	LVDS Input Power Supply (3.3V)					
40	Power	VDDT	LVDS Output Power Supply (3.3V)					
46,79	Power	AVDD	Analog Power Supply(3.3V)					
54,62	Power	VDDMQ	SDRAM Buffer Power Supply(3.3V)					
69,73	Power	AVDD_DAC	DAC Power Supply (2.5~3.3V)					
2,21	Ground	AGND_PLL	PLL Ground					
5,60	Ground	GNDMS	SDRAM Device Ground					
6,17	Ground	VSSH	HDMI Ground					
18,56	Ground	DGND	Digital Ground					
22	Ground	VSSR	LVDS Input Ground					
45	Ground	VSST	LVDS Output Ground					
50,82	Ground	AGND	Analog Ground					
55,63	Ground	GNDMQ	SDRAM Buffer Ground					
71,75	Ground	AGND_DAC	DAC Ground					

Notes:

- 1. Default 3.3V CMOS level output.
- 2. If DDC is not used, both pins DDC_SC/DDC_SD should be connected to ground by $10k\Omega$ resistor.

2.0 PACKAGE DIMENSIONS

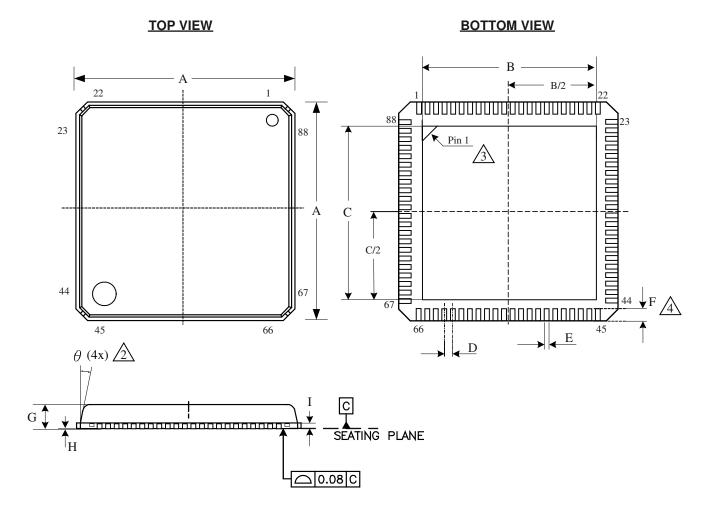


Figure 3: 88 pin QFN package(10x10mm)

Table 2: Dimensions

No. of Leads		SYMBOL								
88 (10 X	10 mm)	Α	В	С	D	Е	F	G	Н	Ι
Milli-	MIN	10.00	6.60	6.60	0.40	0.15	0.35	0.80	0.00	0.20
meters	MAX	10.00	6.90	6.90	0.40	0.25	0.60	0.90	0.05	0.20

Notes:

- 1. Conforms to JEDEC standard JESD-30 MO-220.
- 2. Side of body may be square or curved.
- 3. Exposed pad may have chamfer in area of Pin 1.
- 4. Pins may protrude from edge of body by 0.05 mm.

Disclaimer

This document provides technical information for the user. Chrontel reserves the right to make changes at any time without notice to improve and supply the best possible product and is not responsible and does not assume any liability for misapplication or use outside the limits specified in this document. We provide no warranty for the use of our products and assume no liability for errors contained in this document. The customer should make sure that they have the most recent data sheet version. Customers should take appropriate action to ensure their use of the products does not infringe upon any patents. Chrontel, Inc. respects valid patent rights of third parties and does not infringe upon or assist others to infringe upon such rights.

Chrontel PRODUCTS ARE NOT AUTHORIZED FOR AND SHOULD NOT BE USED WITHIN LIFE SUPPORT SYSTEMS OR NUCLEAR FACILITY APPLICATIONS WITHOUT THE SPECIFIC WRITTEN CONSENT OF Chrontel. Life support systems are those intended to support or sustain life and whose failure to perform when used as directed can reasonably expect to result in personal injury or death.

ORDERING INFORMATION							
Part Number Package Type		Operating Temperature Range	Minimum Order Quantity				
CH7036A-BF	88QFN, Lead-free	Commercial : -20 to 70°C	168/Tray				
CH7036A-BFI	88QFN, Lead-free	Commercial : -40 to 85°C	168/Tray				

Chrontel

Chrontel International Limited

129 Front Street, 5th floor, Hamilton, Bermuda HM12 www.chrontel.com E-mail: sales@chrontel.com

©2010 Chrontel. All Rights Reserved. Printed in the U.S.A.

209-1000-011 Rev. 1.23, 03/24/2011