

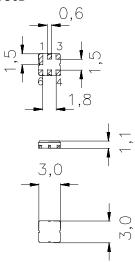
Data Sheet B4121

B4121

Low-Loss Filter for Mobile Communication

942,50 MHz

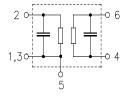
Data Sheet


Ceramic package DCC6D

Features

- Low-loss RF filter for mobile telephone EGSM systems, receive path
- Low amplitude ripple
- Usable passband 35 MHz
- Unbalanced to balanced operation
- \blacksquare Impedance transformation from 50 Ω to 150 Ω
- Ceramic package for Surface Mounted Technology (SMT)

Terminals


■ Ni, gold-plated

Dimensions in mm, approx. weight 0,037 g

Pin configuration

2	Input, unbalanced
1, 3	Input ground
4, 6	Output, balanced
5	To be grounded
1, 3, 5	Case ground

Туре	Ordering code	Marking and Package according to	Packing according to
B4121	B39941-B4121-U510	C61157-A7-A68	F61074-V8089-Z000

Electrostatic Sensitive Device (ESD)

Maximum ratings

Operable temperature range	T	- 40 / + 85	°C	
Storage temperature range	T_{stg}	- 40 / + 85	°C	
DC voltage	$V_{\rm DC}$	3	V	
Input power max.	P_{IN}			source impedance 50 Ω ,
880 915 MHz		18	dBm	load impedance 150 Ω ,
17051785 MHz		18	dBm	CW input for min. 2000 h

B4121

Low-Loss Filter for Mobile Communication

942,50 MHz

Data Sheet

Characteristics

T = 25+-2 °C $Z_{\rm S}$ = 50 Ω $Z_{\rm L}$ = 150 Ω || 80 nH Operating temperature range: Terminating source impedance:

Terminating load impedance:

			min.	typ.	max.	
Center frequency		$f_{\mathbb{C}}$	_	942,5	_	MHz
Maximum insertion attenuation		α_{max}				
925,0 960,	0 MHz		_	2,8	3,2	dB
Amplitude ripple (p-p)		Δα				
925,0 960,	0 MHz		<u> </u>	1,0	1,4	dB
Attenuation		α				
0,0 600,0			60	70	_	dB
600,0 880,0	0 MHz		50	55	_	dB
880,0 905,0	0 MHz		30	38	_	dB
905,0 915,0	0 MHz		18	23	_	dB
980,01000,0			21	23	_	dB
1000,01025,0	0 MHz		30	37	_	dB
1025,01050,0	0 MHz		35	40	_	dB
1050,01500,0	0 MHz		50	57	_	dB
1500,02130,	0 MHz		45	55	_	dB
2130,03000,	0 MHz		40	48	_	dB
3000,04050,	0 MHz		35	41	_	dB
4050,05700,	0 MHz		23	30	_	dB
Symmetry in band						
(referenced to the matched operating co	ndition)					
S ₃₁ / S ₂₁ 925,0 960,	0 MHz		-1,8	0	1,2	dB
arg(S ₃₁ /S ₂₁) 925,0 960,	0 MHz		170	180	192	0

B4121

Low-Loss Filter for Mobile Communication

942,50 MHz

Data Sheet

Characteristics

Operating temperature range:

Terminating source impedance:

T = -10 to +75 °C $Z_{\rm S}$ = 50 Ω $Z_{\rm L}$ = 150 Ω || 80 nH Terminating load impedance:

					min.	typ.	max.	
Center frequency				$f_{\mathbb{C}}$	_	942,5	_	MHz
Maximum insertion at	tenuatio	on		α_{max}				
	925,0	960,0	MHz		_	3,0	3,8	dB
Amplitude ripple (p-p))			Δα				
	925,0	960,0	MHz		_	1,2	2,0	dB
Attenuation				α				
	0,0	600,0	MHz		60	70	_	dB
	600,0	880,0	MHz		50	55	_	dB
	880,0	905,0	MHz		28	33	_	dB
	905,0	915,0	MHz		18	21	_	dB
	980,0	1000,0	MHz		20	22	_	dB
	1000,0	1025,0	MHz		30	37	_	dB
	1025,0	1050,0	MHz		35	40	_	dB
	1050,0	1500,0	MHz		50	57	_	dB
	1500,0	2130,0	MHz		45	55	_	dB
	2130,0	3000,0	MHz		40	48	_	dB
	3000,0	4050,0	MHz		35	41	_	dB
	4050,0	5700,0	MHz		23	30	_	dB
Symmetry in band								
(referenced to the mato	hed ope	erating cond	lition)					
$ S_{31} / S_{21} $	925,0	960,0	MHz		-2,3	0	1,2	dB
arg(S ₃₁ /S ₂₁)	925,0	960,0	MHz		170	180	192	0

B4121

Low-Loss Filter for Mobile Communication

942,50 MHz

Data Sheet

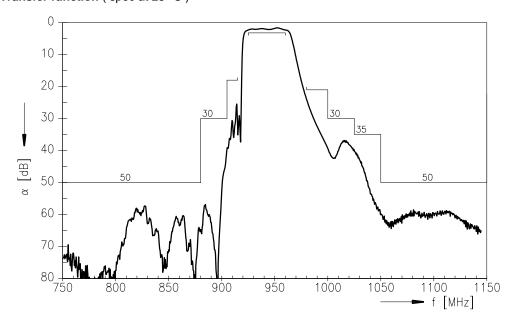
Characteristics

 $T = -40 \text{ to } +85 \,^{\circ}\text{C}$ Operating temperature range:

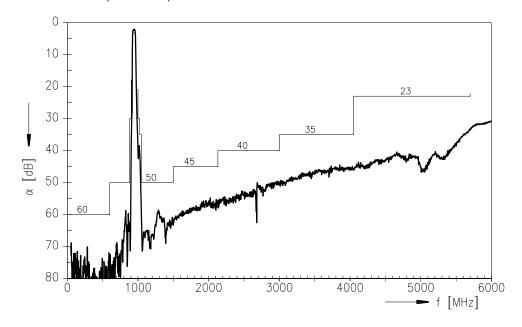
Terminating source impedance:

 $Z_{\rm S} = 50 \,\Omega$ $Z_{\rm L} = 150 \,\Omega$ || 80 nH Terminating load impedance:

max.	
_	MHz
4,2	dB
2,6	dB
_	dB
1,2	dB
192	0
	,


SAW Components

Low-Loss Filter for Mobile Communication


942,50 MHz

Data Sheet

Transfer function (spec at 25 °C)

Transfer function (wideband)

Low-Loss Filter for Mobile Communication

942,50 MHz

Data Sheet

Published by EPCOS AG Surface Acoustic Wave Components Division, SAW MC WT P.O. Box 80 17 09, 81617 Munich, GERMANY

© EPCOS AG 2002. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.