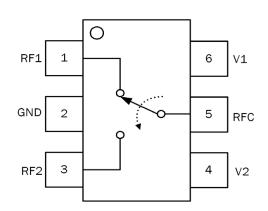


BROADBAND MEDIUM POWER SPDT SWITCH


Package: SC70, 6-Pin

Product Description

The RF3023 is a GaAs pHEMT single-pole double-throw (SPDT) switch designed for general purpose switching applications which require very low insertion loss, moderate isolation, and medium power handling capability. The RF3023 is ideally suited for battery-powered and low control voltage applications.

Features

- 300 kHz to 4 GHz Operation
- 0.25dB Insertion Loss at 1GHz
- 26dB Isolation at 2GHz
- 1.8V Minimum Control Voltage
- 28dBm P0.1dB at 3V
- 18dBm P0.1dB at 1.8V
- 58dBm IP3 at 3V

Applications

- Cellular Handset Applications
- Antenna Tuning Applications
- IEEE 802.11b/g WLAN Applications
- Cellular Infrastructure Applications

Parameter	Specification			Unit	Condition
	Min.	Тур.	Max.	Unit	Condition
Insertion Loss		0.25		dB	1GHz
		0.3	0.4	dB	2GHz
		0.45		dB	3GHz
VSWR		1.15			1GHz
		1.2			2GHz
		1.33			3GHz
Isolation		26		dB	1GHz
	22	26		dB	2GHz
		27		dB	3GHz
P1dB		31		dBm	1GHz
		32		dBm	2GHz
PO.1dB		28		dBm	1GHz
IP3		60		dBm	1GHz, 1MHz Spacing, 15dBm per tone
		58		dBm	2GHz, 1MHz Spacing, 15dBm per tone
T _{ON} , T _{OFF}		40		nS	50% of V _{CTRL} to 10/90% of RF
T _{RISE} , T _{FALL}		30		nS	10/90% RF

Test Conditions: 3.0V, 50Ω , 25 °C, with Application Circuit shown herein.

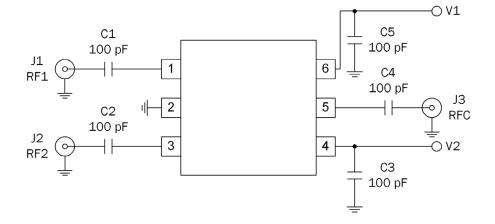
Absolute Maximum Ratings

Parameter	Rating	Unit
Control Voltage	7.0	V
Maximum Input Power	+36	dBm
Operating Temperature	-40 to +85	°C
Storage Temperature	-55 to +150	°C
MSL Rating	1	

Caution! ESD sensitive device.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

RoHS status based on EUDirective 2002/95/EC (at time of this document revision).


The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

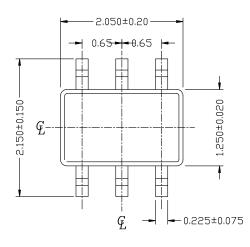
Switch Control Settings

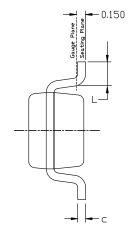
	Control Signals		Signal Paths	
	V1	V2	RFC-RF1	RFC-RF2
Valid States	0	1	ON	OFF
	1	0	OFF	ON
Invalid States	0	0	Indeterminate State*	
	1	1	Indetermin	ate State*

0: Logic level low, 0V~0.2V

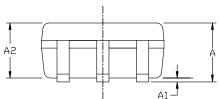
Evaluation Board Schematic

^{1:} Logic level high, 1.8V~5.0V

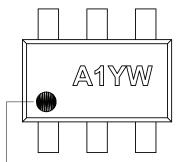

^{*}In indeterminate states, both signal paths are in high insertion loss states, ~10dB.



rfmd.com


Pin	Function	Description
1	RF1	RF Port 1.
2	GND	Ground.
3	RF2	RF Port 2.
4	V2	RF2 Control Voltage.
5	RFC	Common RF Port.
6	V1	RF1 Control Voltage.

Package Drawing


SYMBOL	MIN	MAX
Е	1.15	1.35
D	1.85	2.25
HE	2.00	2.30
А	0.80	1.00
A2	0.80	0.91
A1	0.00	0.09
е	0.65 BSC	
b	0.15	0.30
C	0.08	0.25
L	0.21	0.41

NOTE:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH & GATE BURR.
 3. ALL SPECIFICATIONS COMPLY TO JEDEC SPEC MO-203 ISSUE A.
- 4. DIE IS FACING UP FOR MOLD AND FACING DOWN FOR TRIM/FORM. ie :REVERSE TRIM/FORM.
- 5. PACKAGE SURFACE MATTE FINISH VDI 11~13.
- 6. THE FOOT LENGTH MEASURING BASED ON GAUGE PLANE METHOD.

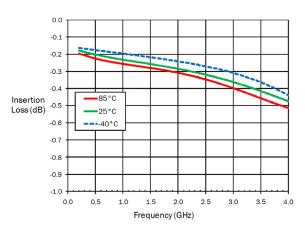
Branding Diagram

Pin 1 Indicator

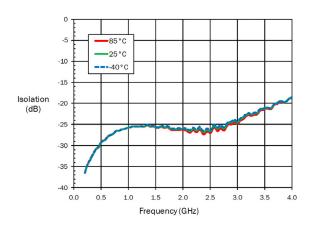
1st and 2nd character (assigned by product group)

J = 20103rd character (Y): K = 2011Z = 2026

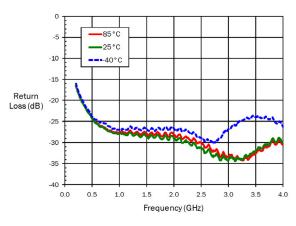
4th character (W): A = Work Week 01 & 02B = Work Week 03 & 04Z = Work Week 51 & 52

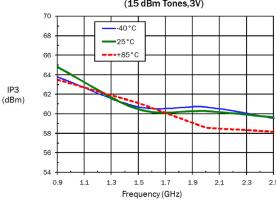


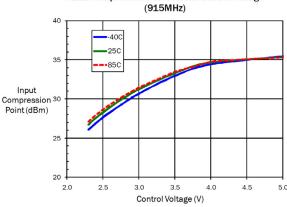
Typical Performance

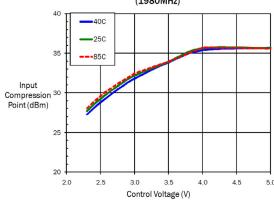

Temp=25°C, V_{CONTROL}=3.0V

Note: Low Frequency RL performance can be improved using larger DC blocking capacitors.


Insertion Loss versus Frequency


Isolation versus Frequency


Return Loss versus Frequency


IP3 versus Frequency (15 dBm Tones,3V)

P1dB Compression Point versus Control Voltage

P1dB Compression Point vs Control Voltage (1980MHz)

Ordering Information

Ordering Code	Description	
RF3023	Sample bag with 25 pieces	
RF3023SR	7" Reel with 100 pieces	
RF3023TR7	7" Reel with 2500 pieces	
RF3023PCK-410	500 MHz PCBA with 5-piece sample bag	