Current Transducer LA 25-NP/SP14

For the electronic measurement of currents : DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

YEARS

Electrical data

I _{PN} I _P	Primary nominal r.m.s. current Primary current, measuring range		0.25 0 ± 0.36		A A
\mathbf{R}_{M}	Measuring resistance		$R_{M \min}$	$R_{M max}$	
	with ± 15 V	@ $\pm 0.25 A_{max}$	100	320	Ω
		@ $\pm 0.36 A_{max}$	100	190	Ω
I _{SN}	Secondary nominal r.m.s. current		25		mA
K _N	Conversion ratio		100 : 1000		
V _c	Supply voltage (± 5 %)		± 15		V
I _c	Current consumption		10 + I _s		mΑ
V _d	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		2.5		kV
V _b	R.m.s. rated voltage ¹⁾ , safe separation		600		V
2	ba	asic isolation	1700		V

Accuracy - Dynamic performance data Х Typical accuracy @ I_{PN} , $T_{A} = 25^{\circ}C$ ± 0.5 % **e**_ Linearity < 0.2 % Typ | Max Offset current²⁾ @ $I_p = 0$, $T_A = 25^{\circ}C$ $\pm 0.05 \pm 0.15$ **I**_ mΑ Residual current ³ 0 $I_{p} = 0$, after an overload of 3 x $I_{pN} \pm 0.05 \pm 0.15$ \mathbf{I}_{OM} mΑ - 10°C .. + 70°C $\pm 0.10 \pm 0.35$ \mathbf{I}_{OT} Thermal drift of I mΑ Response time $^{4)}$ @ 90 % of $I_{P max}$ < 1 μs t, f Frequency bandwidth (- 1 dB) DC .. 150 kHz

General data

T _A	Ambient operating temperature	- 10 + 70	°C
T _S	Ambient storage temperature	- 25 + 85	°C
R _P	Primary coil resistance @ $T_A = 25^{\circ}C$	< 745	mΩ
R _S	Secondary coil resistance @ $T_A = 70^{\circ}C$	110	Ω
L _P	Primary insertion inductance	496	μΗ
R _{IS}	Isolation resistance @ 500 V, $T_A = 25^{\circ}C$	> 1500	ΜΩ
R _{is} m	Isolation resistance @ 500 V, $I_A = 25^{\circ}C$ Mass Standards ⁵⁾	> 1500 22 EN 50178	MΩ g

Notes : 1) Pollution class 2

- ²⁾ Measurement carried out after 15 mn functionning
- ³⁾ The result of the coercive field of the magnetic circuit
- $^{\rm 4)}$ With a di/dt of 100 A/µs
- ⁵⁾ A list of corresponding tests is available

PN

Features

- Closed loop (compensated) multiturns current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

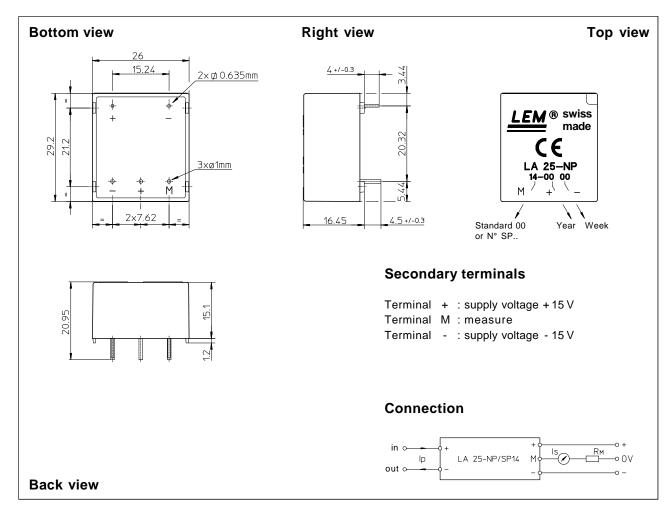
Special features

- I_{PN} = 0.25 A
- $I_{P} = 0 .. \pm 0.36 \text{ A}$
- $\mathbf{K}_{N} = 100 : 1000$
- $\mathbf{T}_{A} = -10^{\circ}$ C ... + 70°C.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications


- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

990126/2

0.25 A

Dimensions LA 25-NP/SP14 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening & connection of primary
- 2 pins 0.635 x 0.635 mm

1.2 mm

- Fastening & connection of secondary 3 pins Ø 1 mm
- Recommended PCB hole
- ± 0.2 mm
- Remark
- I_s is positive when I_p flows from terminal + to terminal -.

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.