

IF Filters for Narrowband Cellular Phones

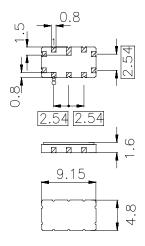
Series/Type: B4864

The following products presented in this data sheet are being withdrawn.

Ordering Code	Substitute Product	Date of Withdrawal	Deadline Last Orders	Last Shipments
B39181B4864Z710		14.06.2006	31.08.2006	30.09.2006

For further information please contact your nearest EPCOS sales office, which will also support you in selecting a suitable substitute. The addresses of our worldwide sales network are presented at www.epcos.com/sales.

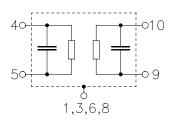
	EPCOS	
SAW Components		B4864
Low Loss Filter for M	obile Communication	183,60 MHz
Data Sheet	SMD	


Features

- Low-loss IF filter for mobile telephone
- Channel selection in AMPS systems
- Filter surface passivated
- Balanced or unbalanced operation possible
- Package for Surface Mounted Technology (SMT)

Terminals

Ni, gold plated


Ceramic package QCC10B

Dimensions in mm, approx. weight 0,23 g

Pin configuration

10	Input
5	Output
9	Balanced input or input ground
4	Balanced output or output ground
1,3,6,8	Case ground
2,7	Not connected

Туре	Ordering code	Marking and Package	Packing
		according to	according to
B4864	B39181-B4864-Z710	C61157-A7-A49	F61064-V8035-Z000

Electrostatic Sensitive Device (ESD)

Maximum ratings

Operable temperature range	Т	- 25/+ 75	°C
Storage temperature range	T_{stg}	- 40/+ 85	°C
DC voltage	V _{DC}	13	V
Source power	Ps	10	dBm

2

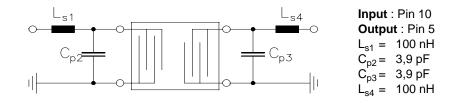
July 25, 2001

SAW Components		B4864
Low Loss Filter for Mobile Con	nmunication	183,60 MHz
Data Sheet Characteristics		
Operating temperature range: Terminating source impedance:	<i>T</i> = -25°C 75°C <i>Z</i> _S = 410 Ω - 0,4 pF	

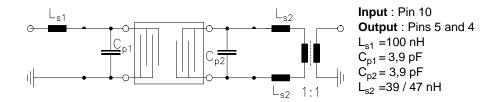
Terminating source impedance:	<i>Z</i> _S = 410 Ω - 0,4 pF
Terminating load impedance:	$Z_{\rm L}$ = 410 Ω - 0,4 pF

		min.	typ.	max.	
Nominal center frequency	f _N	_	183,60		MHz
Filter bandwidth at -5 dB		+-11	62	_	kHz
Minimum insertion attenuation (including losses in the matching network without loss of the balun)	$lpha_{min}$	_	4,8	6,0	dB
Group delay ripple (p-p) f _N – 13,0 kHz f _N + 13,0 kHz	Δτ	_	2,0	10,0	μs
Relative attenuation (relative to α_{min})	α_{rel}				
f _N – 11,0 kHz		-	0,5	5	dB
f _N + 11,0 kHz		_	0,5	5	dB
f _N – 120,0 kHz f _N – 60,0 kHz		11	30	—	dB
f _N + 60,0 kHz f _N + 120,0 kHz		11	24	_	dB
$f_N \pm 120,0 \text{ kHz} \dots f_N \pm 130,0 \text{ kHz}$		43	50	—	dB
$f_{N} \pm 130,0 \text{ kHz} \dots f_{N} \pm 360,0 \text{ kHz}$		45	55	—	dB
$f_N \pm 360,0 \text{ kHz} \dots f_N \pm 1,4 \text{ MHz}$		40	60	—	dB
Impedance within the passband					
Input: $Z_{IN} = R_{IN} C_{IN}$		-	410 0,4	_	Ω pF
Output: $Z_{OUT} = R_{OUT} \parallel C_{OUT}$		_	410 0,4	—	Ω pF
Temperature coefficient of frequency 1)	$TC_{\rm f}$	_	- 0,036	_	ppm/K ²
Turnover temperature	T_0	-	25	—	°C

¹⁾ Temperature dependance of f_c : $f_c(T) = f_c(T_0)(1 + TC_f(T - T_0)^2)$


Output: $Z_{OUT} = R_{OUT} \parallel C_{OUT}$ 410 \parallel 0,4 $\Omega \parallel p$		Â					
Low Loss Filter for Mobile Communication 183,60 MH Data Sheet Image: Characteristics Mean Properties Mean Properies Mean Properies No "C Terminating source impedance: $Z_3 = 410 \Omega \parallel - 0,4 \text{ pF}$ Terminating load impedance: $Z_L = 410 \Omega \parallel - 0,4 \text{ pF}$ max. Mean Properies Nominal center frequency f_N - 183,60 - MHz Filter bandwidth at -5 dB +-11 62 - kHz Minimum insertion attenuation (including losses in the matching network without loss of the balun) α_{min} - 4,8 6,0 dB Group delay ripple (p-p) $\Delta \tau$ - 0,5 5 dB $f_N - 11,0$ kHz - 0,5 5 dB - dB - dB $f_N - 120,0$ kHz $f_N + 130,0$ kHz - 0,5 5 dB - dB $f_N + 130,0$ kHz $f_N + 120,0$ kHz 8 30 - dB $f_N + 120,0$ kHz $f_N + 130,0$ kHz 40 50 - dB - <th></th> <th>PCOS</th> <th></th> <th></th> <th></th> <th>D 4004</th>		PCOS				D 4004	
Data SheetCharacteristicsOperating temperature range: $T = -30^{\circ}$ C 80° CTerminating source impedance: $Z_{s} = 410 \Omega \parallel - 0.4 \text{ pF}$ Terminating load impedance: $Z_{L} = 410 \Omega \parallel - 0.4 \text{ pF}$ Terminating load impedance: $Z_{L} = 410 \Omega \parallel - 0.4 \text{ pF}$ Nominal center frequency f_{N} -183,60Filter bandwidth at -5 dB+-11 62 -Kinimum insertion attenuation (including losses in the matching network without loss of the balun) α_{min} - 4.8 Group delay ripple (p-p) $f_{N} - 13,0 \text{ kHz}$ $\Delta \tau$ - $2,0$ $10,0$ $f_{N} - 11,0 \text{ kHz}$ $n_{N} + 13,0 \text{ kHz}$ - $2,0$ $10,0$ $f_{N} - 11,0 \text{ kHz}$ $n_{N} + 13,0 \text{ kHz}$ - $0,5$ 5 $f_{N} + 11,0 \text{ kHz}$ - $0,5$ 5dB $f_{N} + 11,0 \text{ kHz}$ - $0,5$ 5dB $f_{N} + 120,0 \text{ kHz} \dots f_{N} + 120,0 \text{ kHz}$ 8 24 -dB $f_{N} + 13,0,0 \text{ kHz}$ 4050-dB $f_{N} \pm 130,0 \text{ kHz} \dots f_{N} \pm 360,0 \text{ kHz}$ 4255-dB $f_{N} \pm 360,0 \text{ kHz} \dots f_{N} \pm 1,4 \text{ MHz}$ -410 0,4- Ωp Impedance within the passband $\ln put: Z_{IN} = R_{IN} C_{IN}$ -410 0,4- Ωp Temperature coefficient of frequency 1) TC_{f} 0,036-ppm/			_	_	400	_	
CharacteristicsOperating temperature range: $T = -30^{\circ}$ C 80° CTerminating source impedance: $Z_{\rm S} = 410 \ \Omega \parallel - 0.4 \ pF$ Terminating load impedance: $Z_{\rm L} = 410 \ \Omega \parallel - 0.4 \ pF$ Terminating load impedance: $Z_{\rm L} = 410 \ \Omega \parallel - 0.4 \ pF$ Terminating load impedance: $Z_{\rm L} = 410 \ \Omega \parallel - 0.4 \ pF$ Terminating load impedance: $Z_{\rm L} = 410 \ \Omega \parallel - 0.4 \ pF$ Terminating load impedance: $Z_{\rm L} = 410 \ \Omega \parallel - 0.4 \ pF$ Terminating load impedance: $Z_{\rm L} = 410 \ \Omega \parallel - 0.4 \ pF$ Terminating load impedance: $Z_{\rm L} = 410 \ \Omega \parallel - 0.4 \ pF$ Terminating load impedance: $Z_{\rm L} = 410 \ \Omega \parallel - 0.4 \ pF$ Terminating load impedance: $Z_{\rm L} = 410 \ \Omega \parallel - 0.4 \ pF$ Terminating load impedance: $Z_{\rm L} = 410 \ \Omega \parallel - 0.4 \ pF$ Terminating load impedance: $Z_{\rm L} = 410 \ \Omega \parallel - 0.4 \ pF$ Terminating load impedance: $Z_{\rm L} = 410 \ \Omega \parallel - 0.4 \ pF$ Terminating load impedance: $Z_{\rm L} = 410 \ \Omega \parallel - 0.4 \ pF$ Terminating load impedance: $Z_{\rm L} = 410 \ \Omega \parallel - 0.4 \ pF$ Terminating load impedance: $Z_{\rm L} = 410 \ \Omega \parallel - 0.4 \ pF$ Terminating load impedance: $Z_{\rm L} = 410 \ \Omega \parallel - 0.4 \ pF$ Terminating load impedance: $Z_{\rm L} = 410 \ \Omega \parallel - 0.4 \ pF$ Terminating load impedance: <th col<="" th=""><th></th><th></th><th></th><th></th><th>183,</th><th>60 MHZ</th></th>	<th></th> <th></th> <th></th> <th></th> <th>183,</th> <th>60 MHZ</th>					183,	60 MHZ
Operating temperature range: Terminating source impedance: $T = -30^{\circ}$ C $Z_{\rm S} = 410 \Omega \parallel - 0.4 \text{ pF}$ Terminating load impedance: $Z_{\rm L} = 410 \Omega \parallel - 0.4 \text{ pF}$ Nominal center frequency $f_{\rm N}$ $-$ 183,60 $-$ MHzFilter bandwidth at -5 dB+-1162 $-$ kHzMinimum insertion attenuation (including losses in the matching network without loss of the balun) α_{min} $-$ 4.86,0dBGroup delay ripple (p-p) $f_{\rm N} \Delta \tau$ $-$ 2,010,0 μ sRelative attenuation (relative to α_{min}) $f_{\rm N} +$ $\alpha_{\rm rel}$ $ 0.5$ 5dB $f_{\rm N} -$ 11,0 kHz $ 0.5$ 5dB $f_{\rm N} +$ 12,0,0 kHz $m_{\rm N} +$ 13,0,0 kHz $ 0.5$ 5dB $f_{\rm N} +$ 13,0,0 kHz $m_{\rm N} +$ 13,0,0 kHz 40 50 $-$ dB $f_{\rm N} +$ 13,0,0 kHz $m_{\rm N} +$ 13,0,0 kHz4050 $-$ dB $f_{\rm N} +$ 13,0,0 kHz $m_{\rm N} \pm$ 360,0 kHz4255 $-$ dB $f_{\rm N} \pm$ 130,0 kHz $M_{\rm H} \pm$ 4060 $ \Omega \parallel$ p $f_{\rm N} \pm$ $m_{\rm N} \pm$ $m_{\rm N} \pm$ $m_{\rm N} \pm$ $m_{\rm N} \pm$ $\Omega \parallel$ $f_{\rm N} =$ $m_{\rm N} \pm$ $f_{\rm N} =$ $m_{\rm N} \pm$ $f_{\rm N} \pm$ <th>Data Sheet</th> <th>1 WI - 1</th> <th></th> <th></th> <th></th> <th></th>	Data Sheet	1 WI - 1					
Terminating source impedance: $Z_{\rm S} = 410 \ \Omega \parallel \cdot 0.4 \ \rm pF$ Terminating load impedance: $Z_{\rm L} = 410 \ \Omega \parallel \cdot 0.4 \ \rm pF$ Terminating load impedance: $Z_{\rm L} = 410 \ \Omega \parallel \cdot 0.4 \ \rm pF$ Terminating load impedance: $Z_{\rm L} = 410 \ \Omega \parallel \cdot 0.4 \ \rm pF$ Filter bandwidth at -5 dB $+11$ 62 $-$ kHz Minimum insertion attenuation $\alpha_{\rm min}$ $-$ 4.8 6,0 dB (including losses in the matching network without loss of the balun) Group delay ripple (p-p) $\Delta \tau$ $f_{\rm N} - 13,0 \ \rm kHz \dots f_{\rm N} + 13,0 \ \rm kHz$ $-$ 2,0 10,0 μ s Relative attenuation (relative to $\alpha_{\rm min}$) $\alpha_{\rm rel}$ $-$ 0,5 5 dB $f_{\rm N} - 11,0 \ \rm kHz \dots f_{\rm N} + 13,0 \ \rm kHz$ $-$ 0,5 5 dB $f_{\rm N} - 12,0 \ \rm kHz \dots f_{\rm N} + 120,0 \ \rm kHz$ $-$ 0,5 5 dB $f_{\rm N} + 120,0 \ \rm kHz \dots f_{\rm N} + 120,0 \ \rm kHz$ $-$ 0,5 5 dB $f_{\rm N} + 120,0 \ \rm kHz \dots f_{\rm N} + 130,0 \ \rm kHz$ $-$ 0,5 5 dB $f_{\rm N} \pm 130,0 \ \rm kHz \dots f_{\rm N} \pm 130,0 \ \rm kHz$ $-$ 0,60 $-$ dB $f_{\rm N} \pm 130,0 \ \rm kHz \dots f_{\rm N} \pm 130,0 \ \rm kHz$ $-$ 0,7 $-$ 0,8 $-$ 0,9 $-$	Characteristics						
Terminating load impedance: $Z_L = 410 \Omega \parallel - 0.4 \text{ pF}$ min. typ. max. Nominal center frequency f_N - 183,60 - MHz Filter bandwidth at -5 dB +-11 62 - kHz Minimum insertion attenuation (including losses in the matching network without loss of the balun) α_{min} - 4,8 6,0 dB Group delay ripple (p-p) $f_N - 13,0$ kHz $\Delta \tau$ - 2,0 10,0 μ s Relative attenuation (relative to α_{min}) α_{rel} - 0,5 5 dB $f_N - 11,0$ kHz - 0,5 5 dB - dB - dB $f_N - 12,0$ kHz $f_N - 60,0$ kHz 8 30 - dB $f_N + 12,0$ kHz - 0,5 5 dB $f_N + 30,0$ kHz - 8 24 - dB $f_N + 13,0,0$ kHz - 6,0 - dB - $f_N + 13,0,0$ kHz - 6,0 - dB - - dB - $f_N + $	Operating temperature range: 7	- = -30° (C 80°C				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
Nominal center frequency f_N - 183,60 - MHz Filter bandwidth at -5 dB +-11 62 - kHz Minimum insertion attenuation (including losses in the matching network without loss of the balun) α_{min} - 4,8 6,0 dB Group delay ripple (p-p) $f_N - 13,0$ kHz $\Delta \tau$ - 2,0 10,0 μ s Relative attenuation (relative to α_{min}) $f_N - 11,0$ kHz $\Delta \tau$ - 0,5 5 dB $f_N - 120,0$ kHz $f_N + 13,0$ kHz - 0,5 5 dB - 0,5 5 dB $f_N - 120,0$ kHz $f_N + 120,0$ kHz 8 30 - dB -	Terminating load impedance: Z	L = 410	Ω - 0,4 pl	F			
Filter bandwidth at -5 dB +-11 62 — kHz Minimum insertion attenuation (including losses in the matching network without loss of the balun) α_{min} — 4,8 6,0 dB Group delay ripple (p-p) $f_N - 13,0$ kHz $\Delta \tau$ $f_N - 11,0$ kHz — 2,0 10,0 μ s Relative attenuation (relative to α_{min}) $f_N - 11,0$ kHz $-$ 0,5 5 dB $f_N - 11,0$ kHz — 0,5 5 dB $f_N - 120,0$ kHz $f_N - 60,0$ kHz 8 30 — dB $f_N + 120,0$ kHz $m_N + 120,0$ kHz 8 24 — dB $f_N + 120,0$ kHz $f_N \pm 130,0$ kHz 40 50 — dB $f_N \pm 130,0$ kHz $m_N \pm 360,0$ kHz 42 55 — dB $f_N \pm 360,0$ kHz $f_N \pm 1,4$ MHz 40 60 — dB Impedance within the passband — $m_{10} \parallel 0,4$ — $\Omega \parallel p$ Output: $Z_{OUT} = R_{OUT} \parallel C_{OUT}$ — $410 \parallel 0,4$ — $\Omega \parallel p$ Temperature coefficient of frequency 1)			min.	typ.	max.		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Nominal center frequency	f _N	—	183,60		MHz	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Filter bandwidth at -5 dB		+-11	62	_	kHz	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Minimum insertion attenuation	α_{min}	_	4,8	6,0	dB	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		out					
Relative attenuation (relative to α_{min}) α_{rel} 0,5 5 dB $f_N - 11,0 \text{ kHz}$ 0,5 5 dB $f_N + 11,0 \text{ kHz}$ 0,5 5 dB $f_N + 11,0 \text{ kHz}$ 0,5 5 dB $f_N + 120,0 \text{ kHz}$ $f_N - 60,0 \text{ kHz}$ 8 30 dB $f_N + 60,0 \text{ kHz}$ $f_N + 120,0 \text{ kHz}$ 8 24 dB $f_N \pm 120,0 \text{ kHz}$ $f_N \pm 130,0 \text{ kHz}$ 40 50 dB $f_N \pm 130,0 \text{ kHz}$ $f_N \pm 360,0 \text{ kHz}$ 42 55 dB $f_N \pm 360,0 \text{ kHz}$ $f_N \pm 1,4 \text{ MHz}$ 40 60 dB Impedance within the passband 410 0,4 $\Omega \mid p$ Output: $Z_{IN} = R_{IN} \mid C_{IN}$ 410 0,4 $\Omega \mid p$ Temperature coefficient of frequency 1) TC_f -0,036 ppm/	Group delay ripple (p-p)	$\Delta \tau$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	f _N – 13,0 kHz f _N + 13,0 kHz		-	2,0	10,0	μs	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Relative attenuation (relative to α_{min})	α_{rel}					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	f _N – 11,0 kHz		-	0,5	5	dB	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	f _N + 11,0 kHz		-	0,5	5	dB	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	f _N – 120,0 kHz f _N – 60,0 kHz		8	30	—	dB	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	f _N + 60,0 kHz f _N + 120,0 kHz		8	24	—	dB	
$f_{N} \pm 360,0 \text{ kHz } \dots f_{N} \pm 1,4 \text{ MHz}$ $40 60 - dB$ $Inpedance \text{ within the passband}$ $Input: Z_{IN} = R_{IN} C_{IN} \qquad - \qquad 410 \mid 0,4 \qquad - \qquad \Omega \mid p$ $Output: Z_{OUT} = R_{OUT} \mid C_{OUT} \qquad - \qquad 410 \mid 0,4 \qquad - \qquad \Omega \mid p$ $Temperature \ coefficient \ of \ frequency \ ^{1)} TC_{f} - \qquad -0,036 \qquad - \qquad ppm/$			40	50	—	dB	
Impedance within the passband Input: $Z_{IN} = R_{IN} \parallel C_{IN}$ 410 $\parallel 0,4$ $\Omega \parallel p$ Output: $Z_{OUT} = R_{OUT} \parallel C_{OUT}$ 410 $\parallel 0,4$ $\Omega \parallel p$ Temperature coefficient of frequency 1) TC_{f} 0,036 $ppm/$			42	55	—	dB	
Input: $Z_{IN} = R_{IN} \parallel C_{IN}$ -410 \parallel 0,4- $\Omega \parallel p$ Output: $Z_{OUT} = R_{OUT} \parallel C_{OUT}$ -410 \parallel 0,4- $\Omega \parallel p$ Temperature coefficient of frequency 1) TC_f	$f_N \pm 360,0 \text{ kHz} \dots f_N \pm 1,4 \text{ MHz}$		40	60		dB	
Output: $Z_{OUT} = R_{OUT} \parallel C_{OUT}$ 410 $\parallel 0.4$ $\Omega \parallel p$ Temperature coefficient of frequency 1) TC_f $ -0.036$ $-$	Impedance within the passband						
Temperature coefficient of frequency 1) TC_{f} $ -0,036$ $ ppm/$	Input: $Z_{IN} = R_{IN} \parallel C_{IN}$		_	410 0,4	—	Ω pF	
Temperature coefficient of frequency 1) TC_f $-0,036$ $ppm/$	Output: $Z_{OUT} = R_{OUT} \parallel C_{OUT}$		_	410 0,4	—	Ω pF	
Turnover temperature T_0 —25—°C	Temperature coefficient of frequency ¹⁾	TC _f	-	- 0,036		ppm/K	
	Turnover temperature	T_0	—	25	—	°C	

¹⁾ Temperature dependance of f_c : $f_c(T) = f_c(T_0)(1 + TC_f(T - T_0)^2)$


	EPCOS	
SAW Components		B4864
Low Loss Filter for Mo	bile Communication	183,60 MHz
Data Sheet	<u>smd</u>	

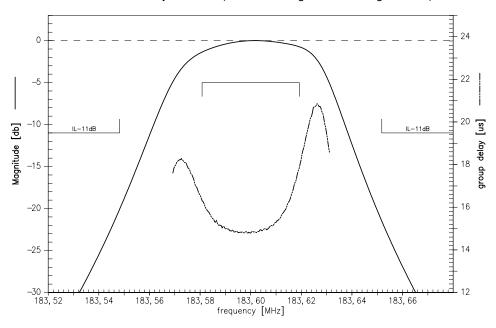
2

Recommended pin configurations / test matching networks: a) single-ended 50 Ω / single-ended 50 Ω

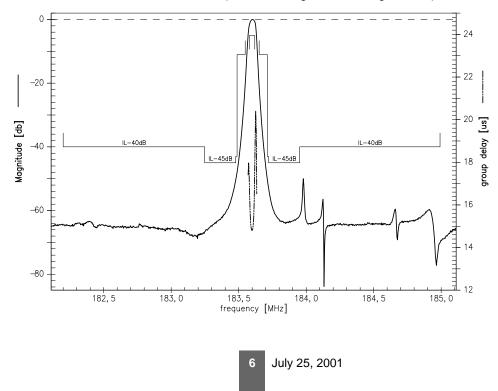
b) single-ended 50 Ω / balanced 50 Ω

Note :

The balanced network is realized using TOKO 1:1 balun B5FL. The insertion attenuation of a balun is 0.3 dB at 183.6 MHz. The loss of the balun is not included in the specified filter insertion attenuation.


The level of ultimate suppression may be limited by electromagnetic feedthrough depending on the layout of the pcb and the arrangement of the matching components.

The above mentioned characteristics can be realized either in balanced or in unbalanced mode of operation.


July 25, 2001

Normalized transfer function passband (measured single ended / single ended)

	ÉPCOS	
SAW Components		B4864
Low Loss Filter for Mob	vile Communication	183,60 MHz
Data Sheet	SMD	

Published by EPCOS AG Surface Acoustic Wave Components Division, OFW E MF P.O. Box 80 17 09, D-81617 München

© EPCOS AG 1999. All Rights Reserved.

As far as patents or other rights of third parties are concerned, liability is only assumed for components per se, not for applications, processes and circuits implemented within components or assemblies.

The information describes the type of component and shall not be considered as assured characteristics.

Terms of delivery and rights to change design reserved.

For questions on technology, prices and delivery please contact the sales offices of EPCOS AG or the international representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our sales offices.

July 25, 2001