
1 Watt Ultra High In/Out Isolation SIP DC/DC Converters

Single and Dual Outputs

Key Features

- I/O Isolation 6000VDC
- Miniature Package
- Efficiency up to 75%
- SMT Technology
- Lost Cost
- MTBF > 2,000,000 Hours

MAU400 1W DC/DC's are specially designed to provide ultra-high levels of isolation 6000VDC in a miniature SIP package.

The series consists of 12 models with input voltages of 5V and 12V, and offers standard output voltages of 5V, 12V, 15V in both single and dual output configurations.

The MAU400 series is an excellent selection for a wide variety of applications including distributed power systems, mixed analog/digital subsystems, portable test equipments, local power networks and battery backed systems.

Block Diagram

Single Output

+Vin LC Filter Push-Pull Inverter -Vin

Dual Output

Model Selection Guide

Model Number	Input Voltage	Output Voltage	Output Current		Input Current		Load Regulation	Efficiency
			Мах.	Min.	@Max. Load	@No Load		@Max. Load
	VDC	VDC	mA	mA	mA (Typ.)	mA (Typ.)	% (Max.)	% (Typ.)
MAU401		5	200	4	303		10	66
MAU402		12	80	2	291	55	8	66
MAU403	5	<i>15</i>	65	1	295		8	66
MAU404	(4.5 ~ 5.5)	±5	±100	±2	303		10	66
MAU405		±12	±40	±1	267		8	72
MAU406		±15	±35	±1	287		8	73
MAU411		5	200	4	126		10	66
MAU412		12	80	2	121		8	66
MAU413	12	<i>15</i>	65	1	123	30	8	66
MAU414	(10.8 ~ 13.2)	±5	±100	±2	126		10	66
MAU415		±12	±40	±1	108		8	74
MAU416		±15	±35	±1	117		8	<i>75</i>

Absolute Maximum Ratings

<u> </u>							
Parame	Min.	Мах.	Unit				
Input Surge Voltage (1000 mS)	5VDC Input Models	-0.7	9	VDC			
	12VDC Input Models	-0.7	18	VDC			
Lead Temperature (1.5mm		260	${\mathscr C}$				
Internal Power Dissipation		650	mW				

Exceeding these values can damage the module. These are not continuous operating ratings.

Environmental Specifications

Parameter	Conditions	Min.	Мах.	Unit
Operating Temperature	Ambient	-25	+70	${\mathscr C}$
Operating Temperature	Case	-25	+90	${\mathscr C}$
Storage Temperature		-40	+125	${\mathscr C}$
Humidity			95	%
Cooling	Free-A	ir Convec	tion	

Note:

- 1. Specifications typical at Ta=+25°C, resistive load, nominal input voltage, rated output current unless otherwise noted.
- 2. Ripple & Noise measurement bandwidth is 0-20
- 3. These power converters require a minimum output loading to maintain specified regulation.
- Operation under no-load conditions will not damage these devices; however they may not meet all listed specifications.
- 5. All DC/DC converters should be externally fused at the front end for protection.
- 6. Other input and output voltage may be available, please contact factory.
- 7. Specifications subject to change without notice.

Input Specifications

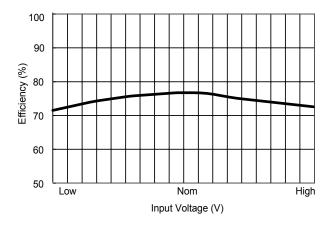
Parameter	Model	Min.	Тур.	Мах.	Unit	
Start Voltage	5V Input Models	4.5	5	5.5	VDC	
	12V Input Models	10.8	12	<i>13.2</i>		
Reverse Polarity Input Current	All Models			0.3	А	
Input Filter	All Wodels	Internal Capacitor				

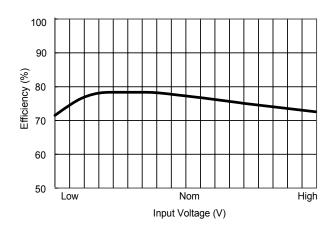
Output Specifications

Parameter	Conditions	Min.	Тур.	Мах.	Unit
Output Voltage Accuracy			±1.0	±3.0	%
Output Voltage Balance	Dual Output Balance Load		±0.1	±1.0	%
Line Regulation	For Vin Change 1%		±1.2	±1.5	%
Load Regulation	Io=20% to 100% See Model Selection Guide		Guide	%	
Ripple & Noise (20MHz)			100	150	mV P-P
Ripple & Noise (20MHz)	Over Line,Load & Temp			200	mV P-P
Ripple & Noise (20MHz)				5	mV rms.
Over Load		120			%
Temperature Coefficient			±0.01	±0.02	%/°C
Output Short Circuit	0.5 Second Max.				

General Specifications

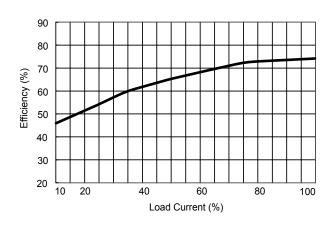
Parameter	Conditions	Min.	Тур.	Мах.	Unit
Isolation Voltage	60 Seconds	60 Seconds 6000			VDC
Isolation Test Voltage	Flash Tested for 1 Second	6600			VDC
Isolation Resistance	500VDC	10			$G\Omega$
Isolation Capacitance	100KHz,1V		80	120	ρF
Switching Frequency		50	80	100	KHz
MTBF	MIL-HDBK-217F @ 25°C, Ground Benign	2000			K Hours

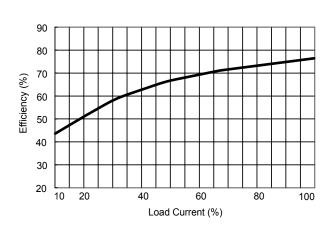

Capacitive Load


Models by Vout	5V	12V	15V	±5V #	±12V #
Maximum Capacitive Load	680	680	680	220	220

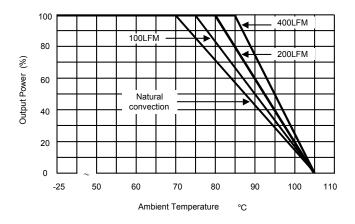
Note: # For each output .

Input Fuse Selection Guide

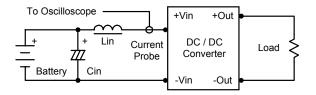

5V Input Models	12V Input Models
500mA Slow - Blow Type	200mA Slow - Blow Type



Efficiency vs Input Voltage (Single Output)


Efficiency vs Input Voltage (Dual Output)

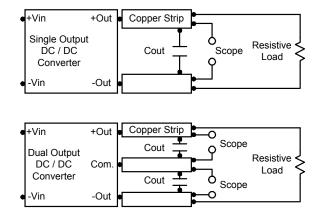
Efficiency vs Output Load (Single Output)


Efficiency vs Output Load (Dual Output)

Derating Curve

Test Configurations

Input Reflected-Ripple Current Test Setup


Input reflected—ripple current is measured with a inductor Lin (4.7uH) and Cin (220uF, ESR < 1.0 Ω at 100 KHz) to simulate source impedance.

Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0–500 KHz.

Peak-to-Peak Output Noise Measurement Test

Use a Cout 0.33uF ceramic capacitor.

Scope measurement should be made by using a BNC socket, measurement bandwidth is 0–20 MHz. Position the load between 50 mm and 75 mm from the DC/DC Converter.

Design & Feature Considerations

Maximum Capacitive Load

The MAU400 series has limitation of maximum connected capacitance at the output.

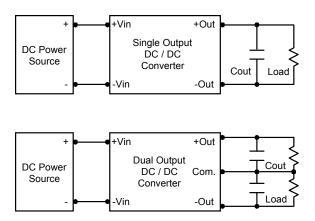
The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time.

For optimum performance we recommend 220uF maximum capacitive load for dual outputs and 680uF capacitive load for single outputs.

The maximum capacitance can be found in the data.

Input Source Impedance

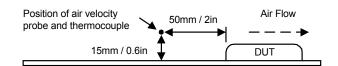
The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module.

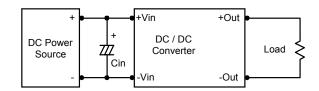

In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup.

Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0 Ω at 100 KHz) capacitor of a 2.2uF for the 5V input devices, a 1.0uF for the 12V input devices.

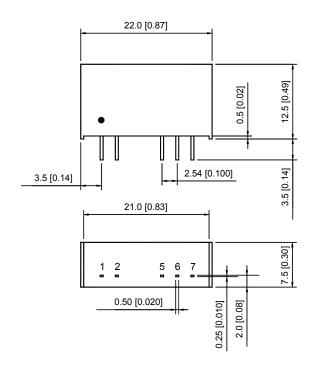
Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance.

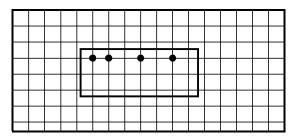

To reduce output ripple, it is recommended to use 1.5uF capacitors at the output.



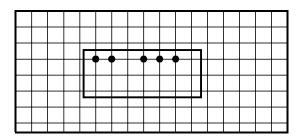
Thermal Considerations


Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 90°C.

The derating curves are determined from measurements obtained in an experimental apparatus.



Mechanical Data



Connecting Pin Patterns Top View (2.54 mm / 0.1 inch grids)

Single Output

Dual Output

Tolerance Millimeters Inches .X±0.25 .XX±0.01 .XX±0.25 .XXX±0.01 Pin ±0.05 ±0.002

Pin Connections

Pin	Single Output	Dual Output	
1	+Vin	+Vin	
2	-Vin	-Vin	
5	-Vout	-Vout	
6	No Pin	Common	
7	+Vout	+Vout	

Physical Characteristics

22.0X7.5X12.5 mm Case Size

1.31×0.81×0.4 inches

Case Material : Non-Conductive Black Plastic

Weight : 3.9g

Units are encapsulated in a low thermal resistance molding compound which has excellent chemical resistance and electrical properties in high humidity environment and over a wide operating temperature range. The encapsulant and outer shell of the unit have UL94V-0 ratings. The leads are tin plated for better soldering.