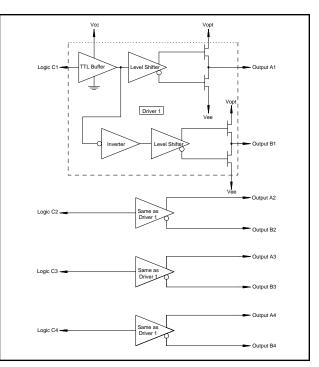


Quad Driver for GaAs FET Switches and Attenuators


Features

- High Speed CMOS Technology
- Quad Channel
- Positive Voltage Control
- Low Power Dissipation
- Low Cost Plastic SOIC-16 Package

Description

The SWD-119-PIN is a quad channel driver used to translate TTL control inputs into gate control voltages for GaAs FET microwave switches and attenuators. High speed analog CMOS technology is utilized to achieve low power dissipation at moderate to high speeds, encompassing most microwave switching applications. The output HIGH level is optionally 0 to +2.0V (relative to GND) to optimize the intermodulation products of the control devices at low frequencies.

Functional Schematic

Pin Configuration

Pin No.	Function	Pin No.	Function
1	Vee	9	Output A1
2	Vcc	10	Output B1
3	C4	11	Output A2
4	C3	12	Output B2
5	C2	13	Output A3
6	C1	14	Output B3
7	Vopt	15	Output A4
8	Ground	16	Output B4

Ordering Information

Part Number	Package
SWD-119-PIN	Bulk Packaging
SWD-119TR	1000 piece reel

Note: Reference Application Note M513 for reel size information.

1

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology North America Tel: 800.366.2266
 Europe Tel: +353.21.244.6400
 India Tel: +91.80.4155721
 China Tel: +86.21.2407.1588

Visit www.macomtech.com for additional data sheets and product information.

Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed. M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Quad Driver for GaAs FET Switches and Attenuators

Rev. V7

Guaranteed Operating Ranges

Symbol	Parameter ¹	Unit	Min.	Тур.	Max.
V _{cc}	Positive DC Supply Voltage	V	4.5	5.0	5.5
V _{EE}	Negative DC Supply Voltage	V	-8.5	-5.0	-4.5
V _{OPT} ²	Optional DC Output Supply Voltage	V	0	1.0	2.0
V _{OPT} -V _{EE}	Negative Supply Voltage Range	V	4.5	6.5	8.5
V _{CC} -V _{EE}	Positive to negative Supply Range	V	9.0	10.0	14.0
T _A	Operating Ambient temperature	°C	-40	+25	+85
I _{ОН}	DC Output Current - High	mA	_	_	-1.0
I _{OL}	DC Output Current - Low	mA	_	_	1.0
T _{rise} , T _{fall}	Maximum Input Rise or Fall Time	nS	_	_	500

1. All voltages are relative to GND.

 V_{OPT} is grounded for most applications. To improve the intermodulation performance and the 1 dB compression point of GaAs control devices at low frequencies, V_{OPT} can be increased to between 1.0 and 2.0V. The nonlinear characteristics of the GaAs control devices will approximate performance at 500 MHz. It should be noted that the control current that is on the GaAs MMICs will increase when positive controls are applied.

DC Characteristics over Guaranteed Operating Range

Symbol	Parameter	Test Conditions		Units	Min.	Тур.	Max.
V _{IH}	Input High Voltage	Guaranteed High Input Voltage		V	2.0	—	_
VIL	Input Low Voltage	Guaranteed Low Input Voltage		V	—	—	0.8
V _{IH}	Output High Voltage	I _{OH} = -1 mA	V _{EE} = Max	V	V _{OPT} -0.1	—	—
V _{OL}	Output Low Voltage	I _{OL} = 1 mA	V _{EE} = Max	V	—	—	V _{EE} +0.1
l _{iN}	Input Leakage Current	$V_{IN} = V_{CC} \text{ or } GND$	V _{EE} = Min	μA	-1.0	0	1.0
lcc	Quiescent Supply Current	V _{CC} = Max V _{OPT} = Min or Max	$V_{EE} = Min$ $V_{IN} = V_{CC}$ or GND	μA	—	250	400
ΔI_{CC}	Additional Supply Current, per TTL Input pin	V _{CC} = Max	$V_{IN} = V_{CC} - 2.1 V$	mA	_	_	1.0

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Silicon Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

2

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

Truth Table

Input	Outputs				
сх	A B				
Logic "0"	V _{EE}	V _{OPT}			
Logic "1"	V _{OPT}	V _{EE}			

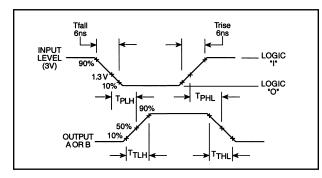
North America Tel: 800.366.2266
 Europe Tel: +353.21.244.6400
 India Tel: +91.80.4155721
 China Tel: +86.21.2407.1588

Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Quad Driver for GaAs FET Switches and Attenuators

Rev. V7


AC Characteristics Over Guaranteed Operating Range³

Symbol	Parameter	-55 to +25°C	<u>≺</u> +85°C	<u><</u> +125°C	Unit
T _{PLH}	Propagation Delay	22	25	30	nS
T _{PHL}	Propagation Delay	22	25	30	nS
T _{TLH}	Output Rising Transition Time	9.0	9.0	9.0	nS
T _{THL}	Output Falling Transition Time	8.0	8.0	8.0	nS
T _{skew}	Delay Skew, Output A to Output B	4.0	4.0	4.0	nS
C _{IN}	Input Capacitance	10	10	10	pF
C _{PDC}	Power Dissipation Capacitance ⁴	10	10	10	pF
C _{PDE}	Power Dissipation Capacitance ⁴	140	140	140	pF

3. V_{CC} = 4.5V, V_{OPT} - V_{EE} = min or max, V_{OPT} = 0V, C_L = 25 pF, Trise, Tfall = 6nS. These conditions represent the worst case for slow delays.

4. Total Power Dissipation is calculated by the following formula: PD = V_{CC} ²fC _{PDC} + (V_{OPT}-V_{EE}) ²fC_{PDE}

Switching Waveforms

Absolute Maximum Ratings⁵

Symbol	Parameter	Min	Max	Unit
V _{cc}	Positive DC Supply Voltage	-0.5	7.0	V
V_EE	Negative DC Supply Voltage	-9.0	0.5	V
V _{OPT}	Optional DC Output Supply Voltage	-0.5	Vcc +0.5	V
V_{OPT} - V_{EE}	Output to Negative Supply Voltage Range	-0.5	9.0	V
V_{CC} - V_{EE}	Positive to Nega- tive Supply Voltage Range	-0.5	14.5	V
Vı	DC Input Voltage	-0.5	V _{CC} +0.5	V
I _I	DC Input Current	-25	25	mA
Vo	DC Output Voltage	V _{EE} -0.5	V _{OPT} +0.5	V
P_D^6	Power Dissipation in Still Air		500	mW
T _{STG}	Storage Temperature	-65	150	°C

5. All voltages are referenced to GND. All inputs and outputs incorporate latch-up protection structures.

6. Derate -7 mW/°C from 65°C to 85°C.

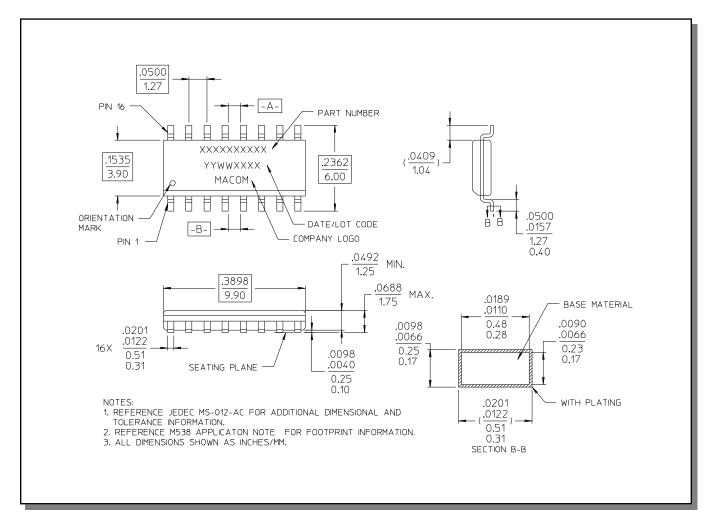
ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology
 • North America Tel: 800.366.2266
 • Europe Tel: +353.21.244.6400

 • India Tel: +91.80.4155721
 • China Tel: +86.21.2407.1588

Visit www.macomtech.com for additional data sheets and product information.

Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

3


M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Quad Driver for GaAs FET Switches and Attenuators

Rev. V7

SOIC-16[†]

[†] Reference Application Note M538 for lead-free solder reflow recommendations.

4

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY:** Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed. North America Tel: 800.366.2266
 Europe Tel: +353.21.244.6400
 India Tel: +91.80.4155721
 China Tel: +86.21.2407.1588

Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.