M/A-COM

Switched Low Noise Amplifier 800-1000 MHz

Features

- High Gain State:
- Gain: 16dB, Noise Figure: 1.6dB
- Input IP3: +3dBm (@2.7V, 25mA)
- Low Gain State:
- Insertion Loss: 5 dB , Input IP3: +24dBm
- Single Supply: +2.7 to +5 VDC
- Low Cost MSOP-8 Plastic Package
- Adjustable current: 10 to 30 mA with external resistor

Description

M/A-COM's AM55-0016 is a high dynamic range, switchable low noise amplifier in a low cost, MSOP 8-lead, surface mount, plastic package. The design utilizes a patented switching technique to provide a low insertion loss, high input IP_{3} bypass state in parallel with the high gain, low noise state. The LNA employs external input matching to obtain optimum noise figure performance and operating frequency flexibility. The AM55-0016 also features flexible biasing to control the current consumption vs. dynamic range trade-off. Its current can be controlled over a range of 10 mA to 30 mA with an external resistor.

Typical applications include receiver front ends in cellular band CDMA handsets. It is also useful as a switched gain block, buffer or driver in portable cellular systems.

The AM55-0016 is fabricated using a low-cost 0.5 -micron gate length GaAs MESFET process. The process features full passivation for increased performance and reliability.

MSOP-8

Ordering Information

Part Number	Package
AM55-0016	MSOP 8-Lead Plastic Package
AM55-0016TR	Forward Tape and Reel*
AM55-0016RTR	Reverse Tape and Reel*
AM55-0016SMB	Designer's Kit

* If specific reel size is required, consult factory for part number.

Electrical Specifications ${ }^{1} \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{Z}_{0}=50 \Omega, \mathrm{~F}=881 \mathrm{MHz}, \mathrm{P}_{\mathrm{IN}}=-\mathbf{3 0} \mathrm{dBm}, \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{I}_{\mathrm{DD}}=10 \mathrm{~mA}$

Parameter	Test Conditions	Units	Min.	Typ.	Max.
HIGH GAIN STATE, Voltage control = 2.7 volts					
Gain		dB	-	16	-
Noise Figure		dB	-	1.6	1.8
Input IP3	$\begin{aligned} & \mathrm{I}_{\mathrm{DD}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=2.7 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{DD}}=25 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=2.7 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{dBm} \\ & \mathrm{dBm} \end{aligned}$	-	$\begin{aligned} & \hline-2 \\ & +3 \end{aligned}$	-
Input VSWR / Output VSWR		-	-	2.0:1	
Reverse Isolation		dB	-	32	-
LOW GAIN STATE, Voltage control = 0 volts					
Insertion Loss	$\mathrm{I}_{\mathrm{DD}}=100 \mu \mathrm{~A}$	dB	-	5	-
Input IP3		dBm	-	+24	-
Input VSWR		-	-	2.3:1	-
Output VSWR		-	-	2.0:1	-

[^0][^1]
Absolute Maximum Ratings ${ }^{1}$

Parameter	Absolute Maximum
V_{DD}	+6 VDC
Input Power	0 dBm
Current	30 mA
Channel Temperature 2	$+150^{\circ} \mathrm{C}$
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

1. Exceeding any one or combination of these limits may cause permanent damage.
2. Typical thermal resistance $\left(\theta_{\mathrm{jc}}\right)=+99^{\circ} \mathrm{C} / \mathrm{W}$.

External Circuitry Parts List ${ }^{1}$

Part	Value	Purpose
C1, C2	1000 pF	Source Bypass
C3, C4	47 pF	By-Pass
C5, C6, C7	10 nF	By-Pass
L1	22 nH	Tuning
RBIAS	see note 2	Source Bias Resistor
U1	UMH9N	Dual Bipolar Transistor

1. All external circuitry parts are readily available, low cost surface mount components (0.040 inches $x 0.020$ inches or 0.060 inches x 0.030 inches).
2. RBIAS is chosen to set the desired current,

$$
\text { For: } \begin{array}{ll}
& I_{\text {dd }} \sim 10 \mathrm{~mA}, \mathrm{R} 1=75 \text { ohms; } \\
& I_{\mathrm{dd}} \sim 20 \mathrm{~mA}, \mathrm{R} 1=25 \text { ohms; } \\
& I_{\mathrm{dd}} \sim 30 \mathrm{~mA}, \mathrm{R} 1=9 \text { ohms. }
\end{array}
$$

Recommended PCB Configuration

Layout View

External Circuitry

Pin Configuration

Pin No.	Pin Name	Description
1	VDD1	Stage 1 Supply Voltage
2	IN	RF Input
3	VS1	Stage 1 Source
4	GND	RF and DC Ground
5	VS2	Stage 2 Source
6	OUT	RF Output
7	VDD2	Stage 2 Supply Voltage
8	VCTL	Switch Control Voltage

Cross Section View

The PCB dielectric between RF traces and RF ground layers should be chosen to reduce RF discontinuities between 50Ω lines and package pins. M/A-COM recommends an FR-4 dielectric thickness of 0.008 " (0.2 mm) yielding a 50Ω line width of $0.015 "(0.38 \mathrm{~mm})$. The recommended metalization thickness is 1 ounce copper.

[^2]
Typical Performance Data

Test Conditions: $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{Z}_{0}=50 \Omega, \mathrm{~V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{I}_{\mathrm{DD}}=10 \mathrm{~mA}$ unless otherwise specified.

LOW GAIN MODE:

Typical Performance Data (continued)

Designer's Kit AM55-0016SMB

The AM55-0016SMB Designer's Kit allows for immediate evaluation of M/A-COM's AM55-0016. The Designer's Kit includes an AM55-0016, an evaluation board and a floppy disk containing typical performance data and a DXF file of the recommended PCB layout. The evaluation board consists of the recommended external surface mount circuitry, RF connectors and a DC multi-pin connector, all mounted to a multi-layer FR-4 PCB. The AM55-0016SMB evaluation PCB is illustrated below with all functional ports labeled.

Evaluation PCB + RF Connector Losses

Port Reference	Approximate RF Loss
RF IN	$0.15 \mathrm{~dB} @ 900 \mathrm{MHz}$
RF OUT	$0.15 \mathrm{~dB} @ 900 \mathrm{MHz}$

The DC connector on the Designer's Kit PCB allows convenient DC line access. This is accomplished by one or more of the following methods:

1. A mating female multi-pin connector
(Newark Electronics Stock \# 46F-4658, not included).
2. Wires soldered to the necessary pins (not included).
3. Clip leads (not included).

AM55-0016 Evaluation Board

[^0]: 1. Refer to Typical Performance Data for performance versus frequency and bias.
[^1]: M/A-COM Division of AMP Incorporated ■ North America: Tel. (800) 366-2266, Fax (800) 618-8883 ■ Asia/Pacific: Tel.+85 221118088 , Fax +85 221118087 ■ Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300020

[^2]: M/A-COM Division of AMP Incorporated ■ North America: Tel. (800) 366-2266, Fax (800) 618-8883 ■ Asia/Pacific: Tel.+85 221118088 , Fax +85 221118087 ■ Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300020

