International TOR Rectifier

REPETITIVE AVALANCHE AND dv/dt RATED HEXFET®TRANSISTORS THRU-HOLE (TO-205AF)

IRFF9130 JANTX2N6849 D JANTXV2N6849 JANS2N6849 REF:MIL-PRF-19500/564

100V, P-CHANNEL

Product Summary

Part Number	BVDSS	RDS(on)	ΙD
IRFF9130	-100V	0.30Ω	-6.5A

The HEXFET[®] technology is the key to International Rectifier's advanced line of power MOSFET transistors. The efficient geometry and unique processing of this latest "State of the Art" design achieves: very low on-state resistance combined with high transconductance.

The HEXFET transistors also feature all of the well established advantages of MOSFETs such as voltage control, very fast switching, ease of parelleling and temperature stability of the electrical parameters.

They are well suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers and high energy pulse circuits.

Features:

- Repetitive Avalanche Ratings
- Dynamic dv/dt Rating
- Hermetically Sealed
- Simple Drive Requirements
- Ease of Paralleling

Absolute Maximum Ratings

	Parameter		Units				
ID @ VGS = -10V, TC = 25°C	Continuous Drain Current	-6.5					
ID @ VGS = -10V, TC = 100°C	Continuous Drain Current	-4.1	Α				
IDM	Pulsed Drain Current ①	-25					
P _D @ T _C = 25°C	Max. Power Dissipation	25	W				
	Linear Derating Factor	0.20	W/°C				
VGS	Gate-to-Source Voltage	±20	V				
EAS	Single Pulse Avalanche Energy ②	92	mJ				
IAR	Avalanche Current ①	_	Α				
EAR	Repetitive Avalanche Energy ①	_	mJ				
dv/dt	Peak Diode Recovery dv/dt 3	-5.5	V/ns				
TJ	Operating Junction	-55 to 150					
TSTG	Storage Temperature Range		°C				
	Lead Temperature	300 (0.063 in. (1.6mm) from case for 10s)					
	Weight	0.98(typical)	g				

For footnotes refer to the last page

Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

	Parameter	Min	Тур	Max	Units	Test Conditions
BVDSS	Drain-to-Source Breakdown Voltage	-100	_	_	V	VGS = 0V, ID = -1.0mA
ΔBV _{DSS} /ΔT _J	Temperature Coefficient of Breakdown Voltage	_	-0.10	_	V/°C	Reference to 25°C, I _D = -1.0mA
RDS(on)	Static Drain-to-Source On-State	_	_	0.30	Ω	Vgs = -10V, ID = -4.1A 4
	Resistance	_	_	0.345	22	VGS =-10V, ID =-6.5A @
VGS(th)	Gate Threshold Voltage	-2.0	_	-4.0	V	V _{DS} = V _{GS} , I _D = -250μA
9fs	Forward Transconductance	2.5	_	_	S (73)	VDS > -15V, IDS = -4.1A ④
IDSS	Zero Gate Voltage Drain Current	_	_	-25		V _{DS} = -80V, V _{GS} =0V
		<u> </u>	—	-250	μΑ	V _{DS} = -80V
						VGS = 0V, TJ = 125°C
IGSS	Gate-to-Source Leakage Forward	_	_	-100		VGS = -20V
GSS	Gate-to-Source Leakage Reverse	_	_	100	nA	VGS=20V
Qg	Total Gate Charge	14.7	_	34.8		VGS =-10V, ID = -6.5A
Qgs	Gate-to-Source Charge	1.0	_	7.1	nC	V _{DS} = -50V
Qgd	Gate-to-Drain ('Miller') Charge	2.0	_	21		
^t d(on)	Turn-On Delay Time	_	_	60		$V_{DD} = -50V, I_{D} = -6.5A,$
tr	Rise Time	_	_	140		$VGS = -10V,RG = 7.5\Omega$
td(off)	Turn-Off Delay Time	_	_	140	ns	
tf	Fall Time		_	140		
LS + LD	Total Inductance	_	7.0	_	nH	Measured from drain lead (6mm/0.25in. from package) to source lead (6mm/0.25in. from package)
Ciss	Input Capacitance	_	800			VGS = 0V, VDS = -25V
Coss	Output Capacitance	_	350	_	pF	f = 1.0MHz
C _{rss}	Reverse Transfer Capacitance	_	125	_		

Source-Drain Diode Ratings and Characteristics

	Parameter		Min	Тур	Max	Units	Test Conditions
Is	Continuous Source Current (Body Diode)			_	-6.5	Α	
ISM	Pulse Source Current (Body Diode) ①		_	_	-25	^`	
VSD	Diode Forward Voltage		_	_	-4.7	V	$T_j = 25$ °C, $I_S = -6.5$ A, $V_{GS} = 0$ V ④
trr	Reverse Recovery Time		_	_	250	nS	$T_j = 25$ °C, $I_F = -6.5$ A, $di/dt ≤ -100$ A/μs
QRR	Reverse Recovery Charge		_	_	3.0	μC	V _{DD} ≤ -50V ④
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.					

Thermal Resistance

	Parameter	Min	Тур	Max	Units	Test Conditions
RthJC	Junction-to-Case	_	_	5.0	90044	
R _{th} JA	Junction-to-Ambient	_	_	175	°C/W	Typical socket mount

Note: Corresponding Spice and Saber models are available on the G&S Website.

For footnotes refer to the last page

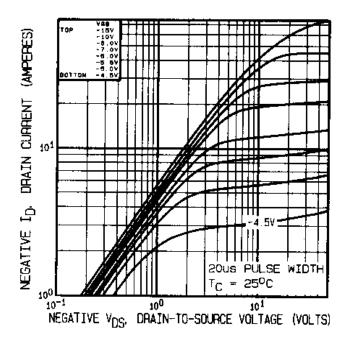


Fig 1. Typical Output Characteristics

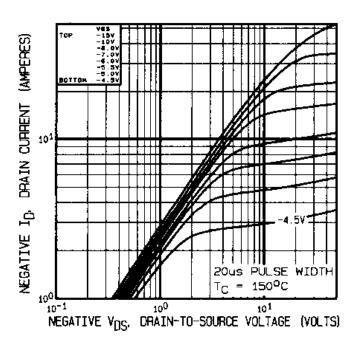


Fig 2. Typical Output Characteristics

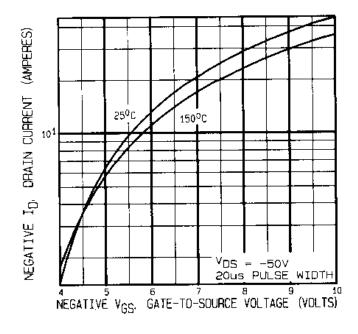
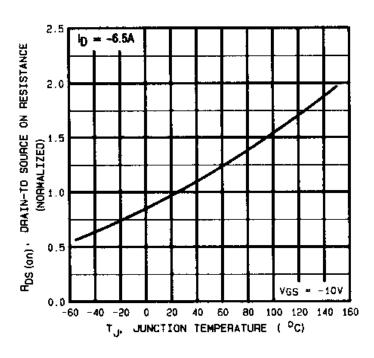
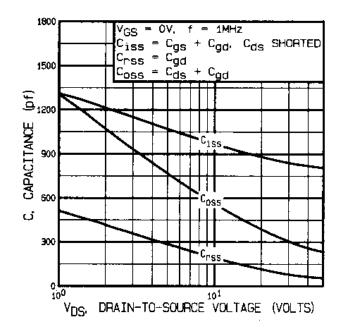
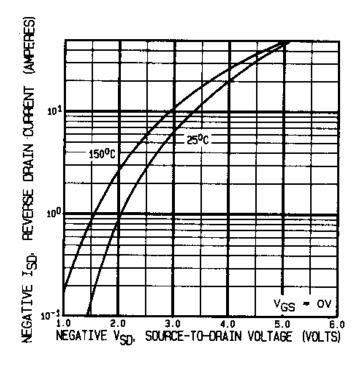
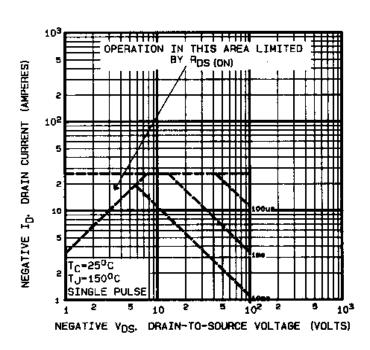




Fig 3. Typical Transfer Characteristics

Fig4. Normalized On-Resistance Vs. Temperature


POR TEST CIRCUIT SEE RIGURE 13 a & b


O 10 20 30 40 50

O 10 20 30 40 50

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

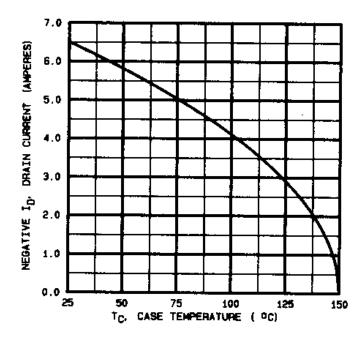

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

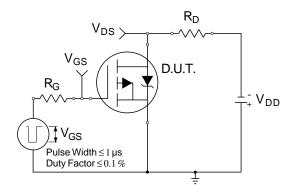


Fig 10a. Switching Time Test Circuit

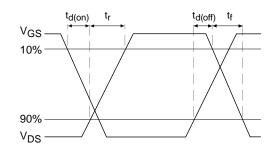


Fig 10b. Switching Time Waveforms

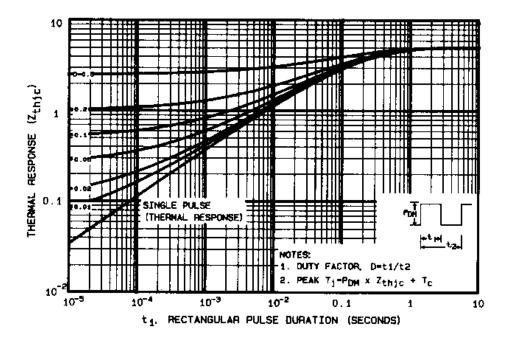


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

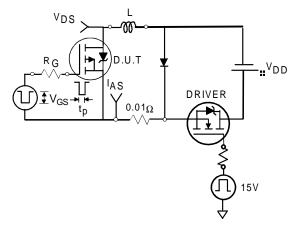


Fig 12a. Unclamped Inductive Test Circuit

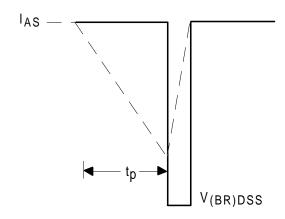


Fig 12b. Unclamped Inductive Waveforms

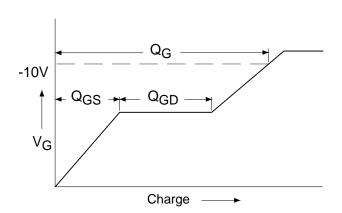
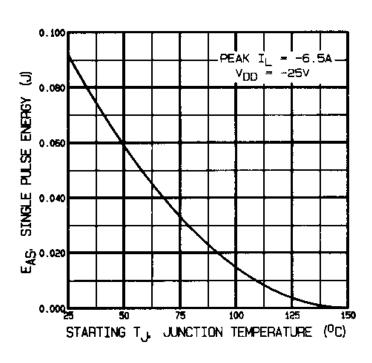
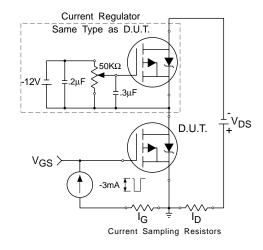
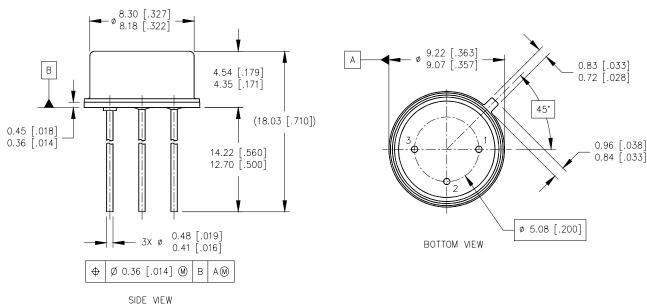



Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current




Fig 13b. Gate Charge Test Circuit

Foot Notes:

- Repetitive Rating; Pulse width limited by maximum junction temperature.
- ② $V_{DD} = -25V$, starting $T_{J} = 25$ °C, Peak $I_{L} = -6.5A$, $V_{GS} = -10V$

- ③ ISD ≤ -6.5A, di/dt ≤ -140A/ μ s, VDD≤ -100V, TJ ≤ 150°C Suggested RG = 7.5 Ω
- 4 Pulse width $\leq 300 \,\mu s$; Duty Cycle $\leq 2\%$

Case Outline and Dimensions —TO-205AF

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME 14.5M-1994.
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 3. CONTROLLING DIMENSION: INCH.
- 4. CONFORMS TO JEDEC OUTLINE TO-205AF (TO-39).

LEGEND

- 1- SOURCE
- 2- GATE
- 3- DRAIN

International Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.

Data and specifications subject to change without notice. 04/01