

DISCRETE POWER DIODES and THYRISTORS DATA BOOK

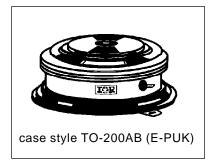
ST380CH..C SERIES

PHASE CONTROL THYRISTORS

Hockey Puk Version

Features

- Center amplifying gate
- Metal case with ceramic insulator
- International standard case TO-200AB (E-PUK)
- Low profile hockey-puk to increase current-carrying capability
- Extended temperature range


Typical Applications

- DC motor controls
- Controlled DC power supplies
- AC controllers

Major Ratings and Characteristics

Parameters		ST380CHC	Units	
I _{T(AV)}		960	А	
	@ T _{hs}	80	°C	
I _{T(RMS)}		2220	А	
	@ T _{hs}	25	°C	
I _{TSM}	@ 50Hz	12500	А	
	@ 60Hz	13000	Α	
I ² t	@ 50Hz	782	KA ² s	
	@ 60Hz	713	KA ² s	
V _{DRM} /V _{RRM}	1	400 to 600	V	
tq	typical	100	μs	
T _J		- 40 to 150	°C	

960A

ELECTRICAL SPECIFICATIONSVoltage Ratings

Type number	Voltage Code	V _{DRM} /V _{RRM} , max. repetitive peak and off-state voltage	V _{RSM} , maximum non- repetitive peak voltage	I_{DRM}/I_{RRM} max. @ $T_J = T_J$ max
		V	V	mA
CT200CU C	04	400	500	400
ST380CHC	06	600	700	100

On-state Conduction

	Parameter	ST380CHC	Units	Conditions	Conditions		
I _{T(AV)}	Max. average on-state current	960 (440)	Α	180° conduction, half sine wave		wave	
. (,	@ Heatsink temperature	80 (110)	°C	double side	double side (single side) cooled		
I _{T(RMS)}	Max. RMS on-state current	2220		DC @ 25°C heatsink temperature double side cooled			
I _{TSM}	Max. peak, one-cycle	12500		t = 10ms	No voltage		
	non-repetitive surge current	13000	Α	t = 8.3ms	reapplied		
		10500		t = 10ms	100% V _{RRM}		
		11000		t = 8.3ms	reapplied	Sinusoidal half wave,	
l ² t	Maximum I ² t for fusing	782		t = 10ms	No voltage	Initial $T_J = T_J$ max.	
		713	KA ² s	t = 8.3ms	reapplied		
		553	KA S	t = 10ms	100% V _{RRM}		
		505	•	t = 8.3ms	reapplied		
I ² √t	Maximum I ² √t for fusing	7820	KA ² √s	t = 0.1 to 10ms, no voltage reapplied			
V _{T(TO)1}	Low level value of threshold voltage	0.85		$(16.7\% \times \pi \times I_{T(AV)} < I < \pi \times I_{T(AV)}), T_J = T_J \text{ ma}$ $(\pi \times I_{T(AV)} < I < 20 \times \pi \times I_{T(AV)}), T_J = T_J \text{ max}.$		$x I_{T(AV)}, T_J = T_J max.$	
V _{T(TO)2}	High level value of threshold voltage	0.88	- V			(AV) , $T_J = T_J \text{ max.}$	
r _{t1}	Low level value of on-state 0.25		mΩ	$(16.7\% \times \pi \times I_{T(AV)} < I < \pi \times I_{T(AV)}), T_J = T_J \text{ max.}$			
r _{t2}	High level value of on-state slope resistance	0.24	11122	$(\pi \times I_{T(AV)} < I < 20 \times \pi \times I_{T(AV)}), T_J = T_J \text{ max}$		(AV)), $T_J = T_J \text{ max}$.	
V _{TM}	Max. on-state voltage	1.58	V	I_{pk} = 2900A, $T_J = T_J$ max, t_p = 10ms sine pulse		t _p = 10ms sine pulse	
I _H	Maximum holding current	600					
I _L	Typical latching current	1000	- mA	$T_J = 25$ °C, anode supply 12V resistive load			

Switching

	Parameter	ST380CHC	Units	Conditions
di/dt	Max. non-repetitive rate of rise of turned-on current	1000	A/µs	Gate drive 20V, 20Ω , $t_r \le 1\mu s$ $T_J = T_J \text{ max, anode voltage } \le 80\% \text{ V}_{DRM}$
t _d	Typical delay time	1.0	II.E	Gate current 1A, di _g /dt = 1A/ μ s $V_d = 0.67\% V_{DRM} T_J = 25^{\circ}C$
tq	Typical turn-off time	100	μs	$I_{TM} = 550A$, $T_J = T_J$ max, di/dt = 40A/ μ s, $V_R = 50V$ dv/dt = 20V/ μ s, Gate 0V 100 Ω , $t_p = 500\mu$ s

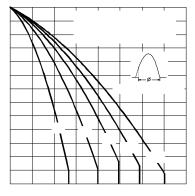


Fig. 3 - Current Ratings Characteristics

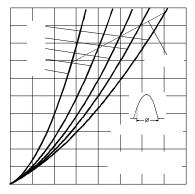


Fig. 5- On-state Power Loss Characteristics

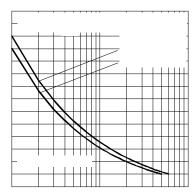


Fig. 7 - Maximum Non-Repetitive Surge Current Single and Double Side Cooled

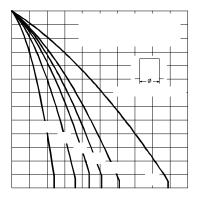


Fig. 4 - Current Ratings Characteristics

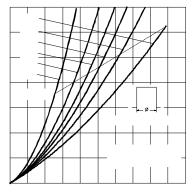


Fig. 6- On-state Power Loss Characteristics

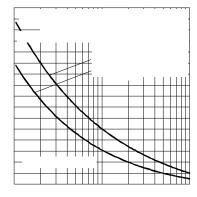


Fig. 8 - Maximum Non-Repetitive Surge Current Single and Double Side Cooled

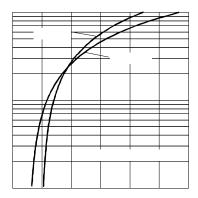


Fig. 9 - On-state Voltage Drop Characteristics

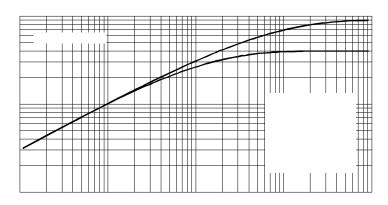


Fig. 10 - Thermal Impedance Z_{thJ-hs} Characteristics

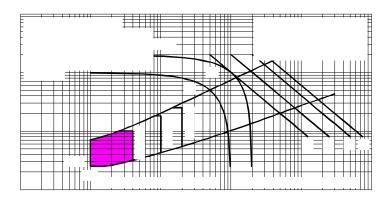


Fig. 11 - Gate Characteristics

Blocking

Parameter		ST380CHC	Units	Conditions	
dv/di	Maximum critical rate of rise of off-state voltage	500	V/µs	$T_J = T_J$ max. linear to 80% rated V_{DRM}	
T _{RRM}	Max. peak reverse and off-state leakage current	100	mA	$T_J = T_J \text{ max, rated } V_{DRM} / V_{RRM} \text{ applied}$	

Triggering

	Parameter	ST380CHC		Units	Conditions				
P _{GM}	Maximum peak gate power	10.0		10.0		10/	$T_J = T_J \text{ max, } t_p \le 5 \text{ms}$		
P _{G(AV)}	Maximum average gate power			W	$T_J = T_J \text{ max, } f = 50 \text{Hz, } d\% = 50$				
I _{GM}	Max. peak positive gate current	3.	0	Α	$T_J = T_J \text{ max, } t_p \le 5 \text{ms}$				
+V _{GM}	Maximum peak positive gate voltage	2	0						
-V _{GM}	Maximum peak negative gate voltage	5.0		V	$T_J = T_J \text{ max, } t_p \le 5 \text{ms}$				
		TYP.	MAX.						
١,	DC gate current required	200	-	mA	T _J = - 40°C				
GT	o trigger	100	200		$T_J = 25^{\circ}C$	Max. required gate trigger/ cur-			
		40	-		T _J = 150°C	rent/voltage are the lowest value			
.,		2.5	-		T _J = - 40°C	which will trigger all units 12V anode-to-cathode applied			
V _{GT}	DC gate voltage required to trigger	1.8	3.0	V	$T_J = 25^{\circ}C$				
	to trigger	1.0	-		T _J = 150°C				
I _{GD}	DC gate current not to trigger	10 0.25		mA		Max. gate current/voltage not to			
V _{GD}	DC gate voltage not to trigger			V	$T_J = T_J \text{ max}$	trigger is the max. value which will not trigger any unit with rated V _{DRM} anode-to-cathode applied			

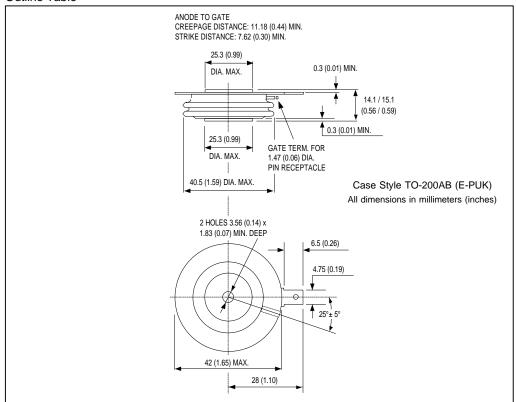
Thermal and Mechanical Specification

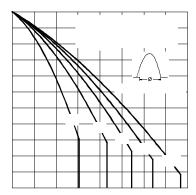
Parameter	ST380CHC	Units	Conditions	
T _J Max. operating temperature rang	e -40 to 150	°C		
T _{stg} Max. storage temperature range	-40 to 150			
R _{thJ-hs} Max. thermal resistance,	0.09	12/\\\	DC operation single side cooled	
junction to heatsink	0.04	K/W	DC operation double side cooled	
R _{thC-hs} Max. thermal resistance,	0.02	K/W	DC operation single side cooled	
case to heatsink	0.01	IX/ VV	DC operation double side cooled	
F Mounting force, ± 10%	9800	N		
	(1000)	(Kg)		
wt Approximate weight	83	g		
Case style	TO - 200AB (E-F	PUK)	See Outline Table	


ΔR_{thJ-hs} Conduction

(The following table shows the increment of thermal resistence R_{th.Hs} when devices operate at different conduction angles than DC)

8010									
Conduction and	Sinusoidal conduction		Rectangula	r conduction	Units	Conditions			
Conduction angle	Single Side	Double Side	Single Side	Double Side	Units	Conditions			
180°	0.010	0.011	0.007	0.007		$T_J = T_J \text{ max.}$			
120°	0.012	0.012	0.012	0.013					
90°	0.015	0.015	0.016	0.017	K/W				
60°	0.022	0.022	0.023	0.023					
30°	0.036	0.036	0.036	0.037					


Ordering Information Table


Device Code

- 1 Thyristor
- 2 Essential part number
- 0 = Converter grade
- 4 CH = Ceramic Puk, High temperature
- 5 Voltage code: Code x 100 = V_{RRM} (See Voltage Rating Table)
- 6 C = Puk Case TO-200AB (E-PUK)
- 7 0 = Eyelet terminals (Gate and Auxiliary Cathode Unsoldered Leads)
 - 1 = Fast-on terminals (Gate and Auxiliary Cathode Unsoldered Leads)
 - 2 = Eyelet terminals (Gate and Auxiliary Cathode Soldered Leads)
 - 3 = Fast-on terminals (Gate and Auxiliary Cathode Soldered Leads)
- 8 Critical dv/dt: None = 500V/µsec (Standard selection)
 - L = 1000V/µsec (Special selection)

Outline Table

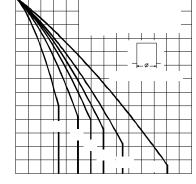


Fig. 1 - Current Ratings Characteristics

Fig. 2 - Current Ratings Characteristics