

Functions

- On-chip PLL for transmission/reception
- On-chip digital unlock detector (only PLL for transmission)
- $5.0 \mathrm{kHz} / 4.4 \mathrm{kHz}$ output pins for guard tone
- Standby function
- Pull-down resistance at channel select pins (D1 to D4)

LC7150: With (for mechanical switch)
LC7151: Without (for microcontroller)

Package Dimensions

unit : mm
3007A-DIP18

Specifications

Absolute Maximum Ratings at $\mathbf{T a}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SS }}=0 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	$V_{\text {DD }}$ max		-0.3 to +6.5	V
Maximum input voltage	V_{1} max	All input pins	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Maximum output voltage	$\mathrm{V}_{\mathrm{O}} 1$ max	$\overline{\mathrm{F} 1, \overline{F 2} \text { Output OFF }}$	-0.3 to +6.5	V
	$\mathrm{V}_{\mathrm{O}} 2$ max	Output pins other than $\mathrm{V}_{\mathrm{O}} 1$	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Output current	IOUT	$\overline{\text { F1, }} \overline{\mathrm{F} 2}$, LDT	0 to 3.0	mA
Allowable power dissipation	Pd max	$\mathrm{Ta} \leqq 75^{\circ} \mathrm{C}$	350	mW
Operating temperature	Topr		-30 to +75	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-40 to +125	${ }^{\circ} \mathrm{C}$

Allowable Operating Conditions at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathbf{V}_{\mathrm{SS}}=\mathbf{0} \mathrm{V}$

Parameter	Symbol	Conditions	min	typ	max	Unit
Supply voltage	V_{DD}		3.0		5.5	V
Input high-level voltage	$\mathrm{V}_{\text {IH }} 1$	D1 to D4, $\overline{\mathrm{SB}}$	$0.7 \mathrm{~V}_{\mathrm{DD}}$		V_{DD}	V
Input low-level voltage	$\mathrm{V}_{\text {IL }} 1$	D1 to D4, $\overline{\mathrm{SB}}$	0		$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
Input high-level voltage	$\mathrm{V}_{1 \mathrm{H}^{2}}$	$\overline{\mathrm{R}} / \mathrm{B}$	0.9 V DD		V_{DD}	V
Input low-level voltage	$\mathrm{V}_{\mathrm{IL}}{ }^{2}$	$\overline{\mathrm{R}} / \mathrm{B}$	0		$0.1 \mathrm{~V}_{\mathrm{DD}}$	V
Input frequency	$\mathrm{f}_{\mathrm{IN}} 1$	PIT; $\mathrm{V}_{\text {IN }}=0.15 \mathrm{Vrms}$	10		27	MHz
	$\mathrm{f}_{1 \mathrm{~N}^{2}}$	PIR; $\mathrm{V}_{\text {IN }}=0.15 \mathrm{Vrms}$	30		42	MHz
	$\mathrm{f}_{\mathrm{IN}}{ }^{\text {d }}$	$\mathrm{XIN} ; \mathrm{V}_{\text {IN }}=0.3 \mathrm{Vrms}$	5.0	10.24	11.0	MHz
Input amplitude	$\mathrm{V}_{1 \times 1} 1$	PIT; $\mathrm{f}_{\mathrm{IN}}=27 \mathrm{MHz}$	0.15		$0.3 \mathrm{~V}_{\mathrm{DD}}$	Vrms
	$\mathrm{V}_{1 \mathrm{I}^{2}}$	PIR; $\mathrm{f}_{\mathrm{IN}}=42 \mathrm{MHz}$	0.15		$0.3 \mathrm{~V}_{\mathrm{DD}}$	Vrms
	$\mathrm{V}_{\text {IN }}{ }^{3}$	XIN; $\mathrm{f}_{\mathrm{IN}}=11 \mathrm{MHz}$	0.3		$0.3 \mathrm{~V}_{\mathrm{DD}}$	Vrms

Electrical Characteristics at $\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathbf{C}$, under Allowable Operating Conditions

Parameter	Symbol	Conditions	min	typ	max	Unit
Input high-level current	$\mathrm{l}_{\mathrm{IH} 1}$	$\mathrm{XIN} ; \mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$			20	$\mu \mathrm{A}$
Input low-level current	$\mathrm{I}_{\text {IL }} 1$	XIN; $\mathrm{V}_{1}=\mathrm{V}_{\text {SS }}$			20	$\mu \mathrm{A}$
Input high-level current	IIH^{2}	PIT, PIR; $\mathrm{V}_{1}=\mathrm{V}_{\text {DD }}$			40	$\mu \mathrm{A}$
Input low-level current	$\mathrm{I}_{\text {IL }}$	PIT, PIR; $\mathrm{V}_{1}=\mathrm{V}_{\text {SS }}$			40	$\mu \mathrm{A}$
Input high-level current	$\mathrm{I}_{1 H^{3}}$	$\overline{\mathrm{SB}}, \overline{\mathrm{R}} / \mathrm{B} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$			10	$\mu \mathrm{A}$
Input low-level current	$\mathrm{I}_{\text {IL }} 3$	$\overline{\mathrm{SB}}, \overline{\mathrm{R}} / \mathrm{B} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{SS}}$			10	$\mu \mathrm{A}$
Input pull-down resistance	Rd	D1 to D4	10	20	40	$\mathrm{k} \Omega$
Input floating voltage	$\mathrm{V}_{\text {IF }}$	D1 to D4; Open			$0.1 \mathrm{~V}_{\mathrm{DD}}$	V
Feedback resistance	Rf1	XIN; $\mathrm{V}_{\mathrm{DD}}=4.3 \mathrm{~V}$		1.0		$\mathrm{M} \Omega$
	Rf2	PIT, PIR; $\mathrm{V}_{\mathrm{DD}}=4.3 \mathrm{~V}$		0.5		$\mathrm{M} \Omega$
Output high-level voltage	$\mathrm{V}_{\mathrm{OH}}{ }^{1}$	PDT, PDR; $\mathrm{I}_{\mathrm{O}}=0.5 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}-1.0$			V
Output low-level voltage	$\mathrm{V}_{\mathrm{OL}} 1$	PDT, PDR; $\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~mA}$			1.0	V
Output OFF leak current	loff1	PDT,PDR; $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{SS}}$		0.01	1.0	nA
Output high-level voltage	$\mathrm{V}_{\mathrm{OH}}{ }^{2}$	LDT; $\mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}-1.0$			V
Output OFF leak current	loff2	LDT; Output OFF $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {SS }}$			5.0	$\mu \mathrm{A}$
Output low-level voltage	$\mathrm{V}_{\mathrm{OL}}{ }^{2}$	$\overline{\mathrm{F} 1}$, $\overline{\mathrm{F}} ; \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$			1.0	V
Output OFF leak current	loff3	$\overline{\text { F1, }}$ F2; Output OFF V ${ }_{\mathrm{O}}=5.5 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
Supply current	IDD1	(C3) $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$		4		mA
	$\mathrm{I}_{\mathrm{DD}}{ }^{2}$	(C3) $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$		7		mA
	IDD^{3}	(C3) $\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$		13		mA
	$\mathrm{l}_{\mathrm{DD}}{ }^{\text {d }}$	(C2) $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$		3		mA
	$\mathrm{l}_{\mathrm{DD}}{ }^{5}$	(C2) $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$		5		mA
	IDD^{6}	(C2) $\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$		10		mA

(C3): XIN $=10.24 \mathrm{MHz}$, xtal connected
PIT $=27 \mathrm{MHz} 150 \mathrm{mVrms}$
PIR $=42 \mathrm{MHz} 150 \mathrm{mVrms}$
$\overline{\mathrm{R}} / \mathrm{B}=\mathrm{V}_{\mathrm{DD}}, \overline{\mathrm{SB}}=\mathrm{V}_{\mathrm{DD}}$, Other pin open
$(\mathrm{C} 2): \mathrm{XIN}=10.24 \mathrm{MHz}$, xtal connected
PIR $=42 \mathrm{MHz}, 150 \mathrm{mVrms}$
$\overline{\mathrm{R}} / \mathrm{B}=\mathrm{V}_{\mathrm{DD}}, \overline{\mathrm{SB}}=\mathrm{V}_{\mathrm{SS}}$, Other pin open
(Note) Power supply $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$: Insert a capacitor of 2000 pF or greater.

Pin Assignment

Equivalent Circuit Block Diagram

Sample Application Circuit

Crystal resonator: HC43/U
2114-85501: CL = 10 pF $\mathrm{C} 1=15$ (10 to 22) pF C2 $=15 \mathrm{pF}$ 2114-85502: CL = 16 pF $\mathrm{C} 1=22(15$ to 33$) \mathrm{pF} \mathrm{C} 2=33 \mathrm{pF}$ KINSEKI, LTD.

Pin Description

Pin	Description
F1	5.0 kHz output. When not used, connect to $\mathrm{V}_{\text {Ss }}$.
F2	4.4 kHz output ($10.24 \mathrm{MHz} \div 2304$). When not used, connect to $\mathrm{V}_{\text {SS }}$.
$\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\text {SS }}$	Power supply.
XIN, XOUT	Crystal resonator (10.24 MHz).
D1 to D4	Channel select pin.
$\overline{\mathrm{R}} / \mathrm{B}$	Base unit/remote unit select pin. $\overline{\mathrm{R}} / \mathrm{B}=$ " 0 " (V_{SS}) Remote unit $\overline{\mathrm{R}} / \mathrm{B}=$ " 1 " (V_{DD}) Base unit
$\overline{\mathrm{SB}}$	Used to stop the TX PLL at the standby mode to minimize current dissipation. $\overline{\mathrm{SB}}=$ " 0 " $\left(\mathrm{V}_{\mathrm{SS}}\right)$...... Standby mode. Only the RX and PLL are operated. The charge pump enters a high-impedance mode. $\overline{\mathrm{SB}}=$ " 1 " $\left(\mathrm{V}_{\mathrm{DD}}\right)$...... The TX, RX and PLL are operated.
PIT	TX programmable divider input pin.
PIR	RX programmable divider input pin.
PDT	TX charge pump output pin.
PDR	RX charge pump output pin.
TEST	LSI test input pin. Connected to $\mathrm{V}_{\text {SS }}$.
LDT	TX PLL unlock signal output pin.

When the phase difference becomes $\mathrm{t}_{\mathrm{D}}(=6.25 \mu \mathrm{~s}$.) or more, 5.6 ms . output pulse is delivered at the LDT pin.

Table of Frequency Division

INPUT	$\begin{aligned} & \mathrm{C} \\ & \mathrm{H} \end{aligned}$	REMOTE ($\overline{\mathrm{R}} / \mathrm{B}=$ "0")					BASE ($\overline{\mathrm{R}} / \mathrm{B}=$ " 1 ")				
		TX (fref = 2.5 kHz)			RX (fref $=5 \mathrm{kHz}$)		TX (fref = 2.5 kHz)			RX (fref $=5 \mathrm{kHz}$)	
D1 D2 D3 D4		$\begin{gathered} \hline \mathrm{f}_{\mathrm{TX}} \\ (\mathrm{MHz}) \end{gathered}$	$\begin{aligned} & \hline \mathrm{fVCO} \\ & (\mathrm{MHz}) \end{aligned}$	N	$\begin{aligned} & \hline \mathrm{f} \mathrm{VCO} \\ & (\mathrm{MHz}) \end{aligned}$	N	$\begin{gathered} \mathrm{f}_{\mathrm{TX}} \\ (\mathrm{MHz}) \end{gathered}$	$\mathrm{f}_{\mathrm{VCO}}$ (MHz)	N	$\begin{gathered} \mathrm{f}_{\mathrm{VCO}} \\ (\mathrm{MHz}) \end{gathered}$	N
$\begin{array}{llll}1 & 0 & 0 & 0\end{array}$	1	49.670	24.8350	9934	35.915	7183	46.610	23.305	9322	38.975	7795
$0 \begin{array}{llll}0 & 1 & 0 & 0\end{array}$	2	49.845	24.9225	9969	35.935	7187	46.630	23.315	9326	39.150	7830
$\begin{array}{llll}1 & 1 & 0 & 0\end{array}$	3	49.860	24.9300	9972	35.975	7195	46.670	23.335	9334	39.165	7833
$\begin{array}{llll}0 & 0 & 1 & 0\end{array}$	4	49.770	24.8850	9954	36.015	7203	46.710	23.355	9342	39.075	7815
$\begin{array}{llll}1 & 0 & 1 & 0\end{array}$	5	49.875	24.9375	9975	36.035	7207	46.730	23.365	9346	39.180	7836
$\begin{array}{llll}0 & 1 & 1 & 0\end{array}$	6	49.830	24.9150	9966	36.075	7215	46.770	23.385	9354	39.135	7827
$\begin{array}{llll}1 & 1 & 1 & 0\end{array}$	7	49.890	24.9450	9978	36.135	7227	46.830	23.415	9366	39.195	7839
000001	8	49.930	24.9650	9986	36.175	7235	46.870	23.435	9374	39.235	7847
$\begin{array}{llll}1 & 0 & 0 & 1\end{array}$	9	49.990	24.9950	9998	36.235	7247	46.930	23.465	9386	39.295	7859
$\begin{array}{llll}0 & 1 & 0 & 1\end{array}$	10	49.970	24.9850	9994	36.275	7255	46.970	23.485	9394	39.275	7855
$\begin{array}{llll}1 & 1 & 0 & 1\end{array}$	10	49.970	23.9850	9994	36.275	7255	46.970	23.485	9394	39.275	7855
$\begin{array}{llll}0 & 0 & 1 & 1\end{array}$	10	49.970	23.9850	9994	36.275	7255	46.970	23.485	9394	39.275	7855
$\begin{array}{llll}1 & 0 & 1 & 1\end{array}$	10	49.970	23.9850	9994	36.275	7255	46.970	23.485	9394	39.275	7855
$\begin{array}{llll}0 & 1 & 1 & 1\end{array}$	10	49.970	23.9850	9994	36.275	7255	46.970	23.485	9394	39.275	7855
$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	10	49.970	23.9850	9994	36.275	7255	46.970	23.485	9394	39.275	7855
00000	10	49.970	23.9850	9994	36.275	7255	46.970	23.485	9394	39.275	7855

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
(1) Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
(2) Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of October, 1996. Specifications and information herein are subject to change without notice.

