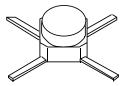


0.5-12 GHz Low Noise Gallium Arsenide FET

Technical Data

ATF-10136

Features


- Low Noise Figure: 0.5 dB Typical at 4 GHz
- Low Bias: $V_{DS} = 2 V, I_{DS} = 20 \text{ mA}$
- **High Associated Gain:** 13.0 dB Typical at 4 GHz
- High Output Power: $20.0 \text{ dBm Typical P}_{1 \text{ dB}}$ at 4 GHz
- Cost Effective Ceramic Microstrip Package
- Tape-and Reel Packaging Option Available^[1]

Description

The ATF-10136 is a high performance gallium arsenide Schottky-barriergate field effect transistor housed in a cost effective microstrip package. Its premium noise figure makes this device appropriate for use in the first stage of low noise amplifiers operating in the 0.5-12 GHz frequency range.

This GaAs FET device has a nominal 0.3 micron gate length using airbridge interconnects between drain fingers. Total gate periphery is 500 microns. Proven gold based metallization systems and nitride passivation assure a rugged, reliable device.

36 micro-X Package

Electrical Specifications, $T_A = 25$ °C

Symbol	Parameters and Test Conditions		Units	Min.	Тур.	Max.
NFo	Optimum Noise Figure: $V_{DS} = 2 V$, $I_{DS} = 25 \text{ mA}$	f = 2.0 GHz	dB		0.4	0.0
		$f = 4.0 \mathrm{GHz}$ $f = 6.0 \mathrm{GHz}$	dB dB		0.5 0.8	0.6
G_{A}	$Gain @ NFO; V_{DS} = 2 V, I_{DS} = 25 mA$	f = 2.0 GHz	dB		16.5	
		$f = 4.0 \mathrm{GHz}$ $f = 6.0 \mathrm{GHz}$	dB dB	12.0	13.0 11.0	
P _{1 dB}	Power Output @ 1 dB Gain Compression $V_{DS} = 4V, I_{DS} = 70\text{mA}$	$f = 4.0 \mathrm{GHz}$	dBm		20.0	
G _{1 dB}	$1~\mathrm{dB}$ Compressed Gain: $\mathrm{V_{DS}} = 4~\mathrm{V}, \mathrm{I_{DS}} = 70~\mathrm{mA}$	$f = 4.0 \mathrm{GHz}$	dB		12.0	
g _m	Transconductance: $V_{DS} = 2 V$, $V_{GS} = 0 V$		mmho	70	140	
I_{DSS}	Saturated Drain Current: $V_{DS} = 2 V$, $V_{GS} = 0 V$		mA	70	130	180
$V_{\rm P}$	Pinchoff Voltage: $V_{DS} = 2 \text{ V}$, $I_{DS} = 1 \text{ mA}$		V	-4.0	-1.3	-0.5

Note:

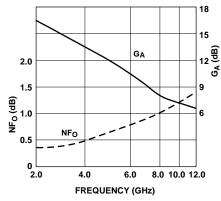
1. Refer to PACKAGING section "Tape-and-Reel Packaging for Surface Mount Semiconductors."

ATF-10136 Absolute Maximum Ratings

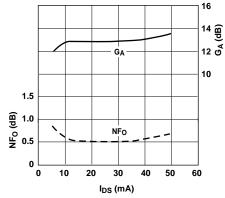
	9			
Symbol	Parameter	Units	Absolute Maximum ^[1]	
$ m V_{DS}$	Drain-Source Voltage	V	+5	
V_{GS}	Gate-Source Voltage	V	-4	
$V_{ m GD}$	Gate-Drain Voltage	V	-7	
I_{DS}	Drain Current	mA	I_{DSS}	
P_{T}	Power Dissipation [2,3]	mW	430	
T_{CH}	Channel Temperature	°C	175	
T_{STG}	Storage Temperature ^[4]	°C	-65 to +175	

Thermal Resistance:	$\theta_{\rm jc} = 350^{\circ} {\rm C/W}; T_{\rm CH} = 150^{\circ} {\rm C}$
Liquid Crystal Measurement:	$1~\mu m Spot Size^{[5]}$

Part Number Ordering Information

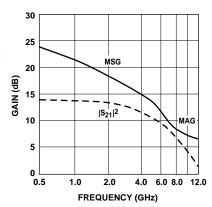

Part Number	Devices Per Reel	Reel Size		
ATF-10136-TR1	1000	7"		
ATF-10136-STR	10	STRIP		

For more information, see "Tape and Reel Packaging for Semiconductor Devices."


ATF-10136 Noise Parameters: $V_{DS} = 2 \text{ V}$, $I_{DS} = 25 \text{ mA}$

Freq.	NFo	Γ	D /50	
GHz	dB	Mag	Ang	$R_N/50$
0.5	0.35	0.93	12	0.80
1.0	0.4	0.85	24	0.70
2.0	0.4	0.70	47	0.46
4.0	0.5	0.39	126	0.36
6.0	0.8	0.36	-170	0.12
8.0	1.1	0.45	-100	0.38

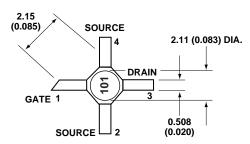
ATF-10136 Typical Performance, $T_A = 25^{\circ}C$

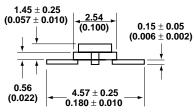

 $\label{eq:continuous} Figure~1.~Optimum~Noise~Figure~and~Associated~Gain~vs.~Frequency.~\\ V_{DS}=2V,~I_{DS}=25~mA,~T_A=25^{\circ}C.~$

$$\label{eq:figure 2.0} \begin{split} & Figure \ 2. \ Optimum \ Noise \ Figure \ and \\ & Associated \ Gain \ vs. \ I_{DS}. \\ & V_{DS} = 2V, \ f = 4.0 \ GHz. \end{split}$$

Notes:

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{CASE\ TEMPERATURE} = 25^{\circ}C.$
- 3. Derate at 2.9 mW/°C for $T_{CASE} > 25$ °C.
- 4. Storage above +150°C may tarnish the leads of this package making it difficult to solder into a circuit. After a device has been soldered into a circuit, it may be safely stored up to 175°C.
- 5. The small spot size of this technique results in a higher, though more accurate determination of θ_{jc} than do alternate methods. See APPLICATIONS PRIMER IIIA for more information.




 $\label{eq:figure 3.} \begin{array}{l} Figure \ 3. \ Insertion \ Power \ Gain, \\ Maximum \ Available \ Gain \ and \\ Maximum \ Stable \ Gain \ vs. \ Frequency. \\ V_{DS} = 2 \ V, I_{DS} = 25 \ mA. \end{array}$

 $\textbf{Typical Scattering Parameters,} \ \text{Common Source,} \ \textbf{Z}_{0} = 50 \ \Omega, \textbf{T}_{A} = 25 \text{°C}, \textbf{V}_{DS} = 2 \ \textbf{V}, \textbf{I}_{DS} = 25 \ \text{mA}$

Freq.	S	S_{11}		\mathbf{S}_{21}		\mathbf{S}_{12}			\mathbf{S}_{22}	
MHz	Mag.	Ang.	dB	Mag.	Ang.	dB	Mag.	Ang.	Mag.	Ang.
0.5	.98	-18	14.5	5.32	163	-34.0	.020	78	.35	-9
1.0	.93	-33	14.3	5.19	147	-28.4	.038	67	.36	-19
2.0	.79	-66	13.3	4.64	113	-22.6	.074	59	.30	-31
3.0	.64	- 94	12.2	4.07	87	-19.2	.110	44	.27	- 42
4.0	.54	-120	11.1	3.60	61	-17.3	.137	31	.22	- 49
5.0	.47	-155	10.1	3.20	37	-15.5	.167	13	.16	- 54
6.0	.45	162	9.2	2.88	13	-14.3	.193	-2	.08	-17
7.0	.50	120	8.0	2.51	-10	-13.9	.203	-19	.16	45
8.0	.60	87	6.4	2.09	-32	-13.6	.210	-36	.32	48
9.0	.68	61	4.9	1.75	-51	-13.6	.209	- 46	.44	38
10.0	.73	42	3.6	1.52	-66	-13.7	.207	-58	.51	34
11.0	.77	26	2.0	1.26	-82	-13.8	.205	-7 3	.54	27
12.0	.80	14	1.0	1.12	-97	-14.0	.200	- 82	.54	15

36 micro-X Package Dimensions

Notes:

Dimensions are in millimeters (inches)
 Tolerances: in .xxx = ± 0.005

mm .xx = \pm 0.13