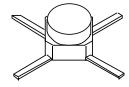


2–16 GHz Low Noise Gallium Arsenide FET

Technical Data

ATF-13336

Features


- Low Noise Figure: 1.4 dBTypical at 12 GHz
- High Associated Gain: 9.0 dB Typical at 12 GHz
- High Output Power: 17.5 dBm Typical P_{1 dB} at 12 GHz
- Cost Effective Ceramic Microstrip Package
- Tape-and-Reel Packaging Option Available^[1]

Description

The ATF-13336 is a high performance gallium arsenide Schottkybarrier-gate field effect transistor housed in a cost effective microstrip package. Its premium noise figure makes this device appropriate for use in low noise amplifiers operating in the 2-16 GHz frequency range.

This GaAs FET device has a nominal 0.3 micron gate length with a total gate periphery of 250 microns. Proven gold based metallization systems and nitride passivation assure a rugged, reliable device.

36 micro-X Package

Symbol	Parameters and Test Conditions		Units	Min.	Typ.	Max.
NFO	Optimum Noise Figure: $V_{DS} = 2.5 \text{ V}$, $I_{DS} = 20 \text{ mA}$	f = 8.0 GHz	dB		1.2	
		f = 12.0 GHz	dB		1.4	1.6
		f = 14.0 GHz			1.6	
GA	Gain @ NF_0 : $V_{DS} = 2.5 V$, $I_{DS} = 20 mA$	f = 8.0 GHz	dB		11.5	
		f = 12.0 GHz		8.0	9.0	
		f = 14.0 GHz	dB		7.5	
P _{1 dB}	Power Output @ 1 dB Gain Compression:	f = 12.0 GHz	dBm		17.5	
	$V_{DS} = 4 V, I_{DS} = 40 mA$					
G_{1dB}	$1~\text{dB}\text{Compressed}\text{Gain:}\text{V}_{\text{DS}}$ = $4~\text{V}, \text{I}_{\text{DS}}$ = $40~\text{mA}$	$\rm f{=}12.0\rm GHz$	dB		8.5	
g _m	Transconductance: $V_{\rm DS}$ = 2.5 V, $V_{\rm GS}$ = 0 V		mmho	25	55	
I _{DSS}	Saturated Drain Current: $V_{\rm DS}$ = 2.5 V, $V_{\rm GS}$ = 0 V		mA	40	50	90
VP	Pinch-off Voltage: $V_{DS} = 2.5 \text{ V}$, $I_{DS} = 1 \text{ mA}$		V	-4.0	-1.5	-0.5

Electrical Specifications, $T_A = 25^{\circ}C$

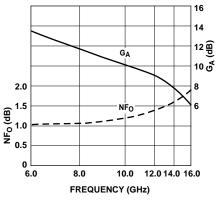
Note:

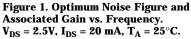
1. Refer to PACKAGING section "Tape-and-Reel Packaging for Surface Mount Semiconductors".

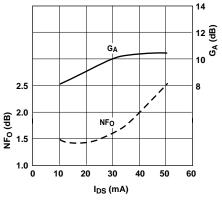
~	-		Absolute
Symbol	Parameter	Units	Maximum ^[1]
$V_{\rm DS}$	Drain-Source Voltage	V	+5
V_{GS}	Gate-Source Voltage	V	-4
V _{GD}	Gate-Drain Voltage	V	-6
$I_{\rm DS}$	Drain Current	mA	I _{DSS}
P _T	Power Dissipation ^[2,3]	mW	225
T _{CH}	Channel Temperature	°C	175
T _{STG}	Storage Temperature	°C	-65 to +175

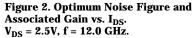
ATF-13336 Absolute Maximum Ratings

Thermal Resistance: $\theta_{jc} = 400^{\circ}C/W; T_{CH} = 150^{\circ}C$ Liquid Crystal Measurement:1 μ m Spot Size^[5]


Part Number Ordering Information


Part Number	Devices Per Reel	Reel Size
ATF-13336-TR1	1000	7"
ATF-13336-STR	10	strip


ATF-13336 Noise Parameters: $V_{DS} = 2.5 \text{ V}$, $I_{DS} = 20 \text{ mA}$


Freq.	NFo	Γ	D /50	
GHz	dB	Mag	Ang	R _N /50
4.0	0.8	.63	93	.27
6.0	1.1	.47	138	.10
8.0	1.2	.40	-153	.20
12.0	1.4	.52	-45	.88
14.0	1.6	.57	-2	1.3

ATF-13336 Typical Performance, $T_A = 25^{\circ}C$

Derate at 2.5mW/°C for T_{CASE} > 85°C. Storage above +150°C r

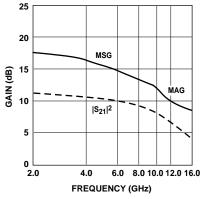
Notes:

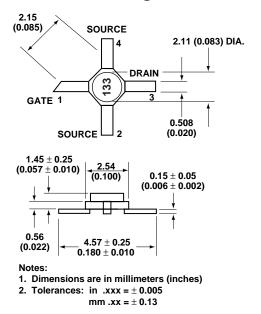
4. Storage above +150°C may tarnish the leads of this package difficult to solder into a circuit. After a device has been soldered into a circuit, it may be safely stored up to 175°C.

1. Permanent damage may occur if any of these limits are exceeded.

2. $T_{CASE TEMPERATURE} = 25^{\circ}C.$

4. The small spot size of this technique results in a higher, though more accurate determination of θ_{jc} than do alternate methods. See MEASUREMENTS section for more information.




Figure 3. Insertion Power Gain, Maximum Available Gain and Maximum Stable Gain vs. Frequency. $V_{DS} = 2.5 V, I_{DS} = 20 mA.$

Freq.	S	S ₁₁		\mathbf{S}_{21}			S ₁₂			S ₂₂	
GHz	Mag.	Ang.	dB	Mag.	Ang.	dB	Mag.	Ang.	Mag.	Ang.	
2.0	.96	-51	10.6	3.39	127	-27.1	.044	57	.61	-41	
3.0	.88	-75	10.3	3.28	106	-23.4	.060	33	.58	-51	
4.0	.86	-96	10.1	3.19	86	-22.6	.074	25	.57	-57	
5.0	.79	-117	9.9	3.13	66	-20.6	.093	12	.54	-65	
6.0	.69	-142	10.2	3.22	46	-18.9	.114	1	.49	-79	
7.0	.60	-178	10.1	3.21	21	-17.6	.132	-18	.42	-97	
8.0	.54	141	9.8	3.10	-4	-17.3	.137	-33	.31	-112	
9.0	.56	103	8.9	2.80	-26	-16.7	.147	-48	.21	-121	
10.0	.56	74	8.3	2.60	-48	-16.5	.150	-63	.09	-145	
11.0	.58	44	7.6	2.39	-68	-16.8	.145	-78	.07	89	
12.0	.63	20	6.7	2.17	-90	-17.5	.133	-95	.16	43	
13.0	.65	3	6.0	2.00	-108	-18.3	.121	-107	.19	21	
14.0	.66	-7	5.5	1.89	-126	-18.9	.114	-121	.19	-4	
15.0	.70	-19	4.9	1.76	-144	-19.0	.112	-129	.16	-28	
16.0	.72	-34	4.4	1.66	-175	-19.2	.110	-142	.14	-32	

Typical Scattering Parameters, Common Emitter, $Z_0 = 50 \Omega$, $T_A = 25^{\circ}$ C, $V_{DS} = 2.5 V$, $I_{DS} = 20 m$ A

A model for this device is available in the DEVICE MODELS section.

36 micro-X Package Dimensions

