PIN Diode Driver for Series / Shunt High Power Switches

Features

- High Drive Current Capability (Up to 50 mA)
- Up to 32V Back Bias in Off State
- Single CMOS Logic Input
- Fast Switching
- Low Current Consumption
- Land Grid Array Package for SMT Applications
- $260^{\circ} \mathrm{C}$ Reflow Compatible
- RoHS* Compliant
- Tape and Reel Packaging Available

Description

M/A-COM's MADR-008851-000100 Switch Driver is designed to work with M/A-COM's line of series / shunt SPDT HMIC switches which operate in the power range of approximately 5 to 20 W CW . It is capable to provide forward bias currents up to 50 mA for each diode in the series/shunt switch, with back bias voltage configurable from 12 V to 32 V . It is packaged in a Land Grid Array surface mount package and is available in tape and reel packaging for high volume applications.

Sample boards are available with M/A-COM 20W switch MASW-000834-13560T.

Ordering Information ${ }^{1}$

Part Number	Package
MADR-008851-000100	Bulk Packaging
MADR-008851-0001TR	300 piece Reel
MADR-008851-0001TB	 MASW-000834-13560T Switch

1. Reference Application Note M513 for reel size information.

* Restrictions on Hazardous Substances, European Union Directive

Pin Configuration

Pin No.	Pin Name	Pin No.	Pin Name
1	VCC	13	GND
2	GND	14	SH2
3	C1 (Logic)	15	GND
4	GND	16	RX Drive
5	VDD	17	GND
6	GND	18	GND
7	GND	19	GND
8	GND	20	GND
9	GND	21	GND
10	TX Drive	22	GND
11	GND	23	GND
12	SH1	-	-

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Silicon Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Moisture Sensitivity

The MSL rating for this part is defined as Level 3 per IPC/JEDEC J-STD-020. Parts shall be stored and/or baked as required for MSL Level 3 parts.

PIN Diode Driver for Series / Shunt High Power Switches

Recommended Operating Conditions

| Parameter | Test Conditions | Unit | Min | Typ |
| :--- | :--- | :---: | :---: | :---: | :---: |
| VCC | Nominal VCC $=3.3 \mathrm{~V}$ | | | |
| Nominal VCC $=5.0 \mathrm{~V}$ | | | | |$)$

2. TX and RX currents are user selectable. Reference "Driver and SPDT Schematic" for suggested values.
3. A resistor needs to be connected between SH 1 and SH 2 to set the shunt diode bias current. Reference "Driver and SPDT Schematic" for suggested values.

Absolute Maximum Ratings ${ }^{4,5}$

Parameter	Absolute Maximum
VCC (+5V)	-0.5 V to +6.5 V
VDD (+28V)	-0.5 V to 40 V
C1 (Logic)	-0.5 V to 6.5 V
RX Sinking Current	60 mA
TX Sinking Current	60 mA
Power Dissipation in Still Air	100 mW
Operational Temperature	-40 to $+85^{\circ} \mathrm{C}$
Storage Temperature	-55 to $+125^{\circ} \mathrm{C}$

4. Exceeding any one or combination of these limits may cause permanent damage to this device.
5. M/A-COM does not recommend sustained operation near these survivability limits.

Truth Table

Control Input	Condition of Driver		Condition of Switch		
C1	TX Voltage	RX Voltage	SH Current	TX	RX
0	High	Low	Low	Off	On
1	Low	High	High	On	Off

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, is considering for development. Performance is based on target specification
and/or prototype measurements. Commitment to develop is not guaranteed.
PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology
Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400
- India Tel: +91.80.4155721 - China Tel: +86.21.2407.1588

Visit www.macomtech.com for additional data sheets and product information.
M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

PIN Diode Driver for Series / Shunt High Power Switches

Rev. V1P

DC Characteristics: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{VCC}=3.0$ to $5.5 \mathrm{~V}, \mathrm{VDD}=12$ to 28 V

Parameter	Test Conditions	Unit	Min	Typ	Max
Quiescent VCC Supply Current	-	nA	-	50	-
Quiescent VDD Supply Current	-	mA	-	0.8	-
Output Back Bias Voltage RX TX SH1	$\begin{aligned} & \text { TX ON } \\ & \text { RX ON } \\ & \text { RX ON } \end{aligned}$	$\begin{aligned} & V \\ & V \\ & V \end{aligned}$	-	$\begin{aligned} & \text { VDD - } 0.5 \\ & \text { VDD } \\ & \text { VDD - } 0.5 \end{aligned}$	-
Output Resistance RX TX	$\begin{aligned} & \text { RX ON } \\ & \text { TX ON } \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$	-	$\begin{aligned} & 22.5 \\ & 22.5 \end{aligned}$	-

Switching Speed When Driving 50 pF Capacitive Loads ${ }^{6}$:

Testing Conditions	Symbol	Parameter	Unit	Typical Performance		
				$-40^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$
$\begin{aligned} \mathrm{VCC} & =+5.0 \mathrm{~V} \\ \mathrm{VDD} & =+28 \mathrm{~V} \\ \mathrm{I}_{\text {SERIES }} & =50 \mathrm{~mA} \end{aligned}$	Switching Speed: TX $\mathrm{T}_{\text {PLH }}$ $\mathrm{T}_{\text {PHL }}$ Tr Tf	50\% CTL to 90\% Voltage 50\% CTL to 10\% Voltage $\begin{aligned} & 10 \%-90 \% \\ & 90 \%-10 \% \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & 200 \\ & 350 \\ & 180 \\ & 200 \end{aligned}$	$\begin{aligned} & 330 \\ & 420 \\ & 320 \\ & 250 \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \\ & 480 \\ & 320 \end{aligned}$
	Switching Speed: RX $\mathrm{T}_{\text {PLH }}$ $\mathrm{T}_{\text {PHL }}$ Tr Tf	50\% CTL to 90\% Voltage 50\% CTL to 10\% Voltage $10 \%-90 \%$ $90 \%-10 \%$	ns ns ns ns	$\begin{aligned} & 200 \\ & 360 \\ & 180 \\ & 220 \end{aligned}$	$\begin{aligned} & 350 \\ & 430 \\ & 330 \\ & 280 \end{aligned}$	$\begin{aligned} & 520 \\ & 520 \\ & 500 \\ & 350 \end{aligned}$
$\begin{gathered} \mathrm{VCC}=+3.3 \mathrm{~V} \\ \mathrm{VDD}=+12 \mathrm{~V} \\ \text { ISERIES }=50 \mathrm{~mA} \end{gathered}$	Switching Speed: TX $\mathrm{T}_{\text {PLH }}$ TPHL Tr Tf	50\% CTL to 90\% Voltage 50\% CTL to 10\% Voltage $10 \%-90 \%$ $90 \%-10 \%$	ns ns ns ns	$\begin{aligned} & 200 \\ & 530 \\ & 180 \\ & 300 \end{aligned}$	$\begin{aligned} & 400 \\ & 580 \\ & 370 \\ & 320 \end{aligned}$	$\begin{aligned} & 570 \\ & 630 \\ & 550 \\ & 360 \end{aligned}$
	Switching Speed: RX $\mathrm{T}_{\text {PLH }}$ TPHL Tr Tf	50\% CTL to 90\% Voltage 50\% CTL to 10\% Voltage $10 \%-90 \%$ $90 \%-10 \%$ 90\%-10\%	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & 200 \\ & 600 \\ & 180 \\ & 330 \end{aligned}$	$\begin{aligned} & 400 \\ & 640 \\ & 390 \\ & 360 \end{aligned}$	$\begin{aligned} & 580 \\ & 700 \\ & 570 \\ & 400 \end{aligned}$

6. Switching parameters for the shunt output are not listed since they can only be measured with a diode switch.

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, is considering for development. Performance is based on target specification
and/or prototype measurements. Commitment to develop is not guaranteed.
PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology
Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.
$\begin{array}{ll}\text { - North America Tel: } 800.366 .2266 & \text { - Europe Tel: }+353.21 .244 .6400 \\ \text { - India Tel: }+91.80 .4155721 & \text { - China Tel: }+86.21 .2407 .1588\end{array}$ Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Switching Speed When Driving M/A-COM MASW-000834-13560T Switch ${ }^{7}$:

Testing Conditions	Symbol	Parameter	Unit	Typical Performance		
				$-40^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$
$\begin{aligned} \mathrm{VCC} & =+5.0 \mathrm{~V} \\ \mathrm{VDD} & =+28 \mathrm{~V} \\ \mathrm{I}_{\text {SERIES }} & =50 \mathrm{~mA} \\ \mathrm{I}_{\text {SHUNT }} & =50 \mathrm{~mA} \end{aligned}$	TX Series Diode Ton $_{\text {ON }}$ Tofr $^{\text {Tr }}$ Tr Tf	$\begin{gathered} 50 \% \text { CTL to } 90 \% \text { RF } \\ 50 \% \text { CTL to } 10 \% \text { RF } \\ 10 \%-90 \% \text { RF } \\ 90 \%-10 \% \text { RF } \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{gathered} 250 \\ 400 \\ 80 \\ 200 \end{gathered}$	$\begin{aligned} & 450 \\ & 520 \\ & 200 \\ & 250 \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \\ & 300 \\ & 300 \end{aligned}$
	RX Series Diode Ton Toff Tr Tf	$\begin{gathered} 50 \% \text { CTL to } 90 \% \text { RF } \\ 50 \% \text { CTL to } 10 \% \text { RF } \\ 10 \%-90 \% \text { RF } \\ 90 \%-10 \% R F \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{gathered} 370 \\ 220 \\ 150 \\ 80 \end{gathered}$	$\begin{aligned} & 600 \\ & 300 \\ & 300 \\ & 120 \end{aligned}$	$\begin{aligned} & 840 \\ & 350 \\ & 500 \\ & 160 \end{aligned}$
	RX Shunt Diode $\mathrm{T}_{\text {ON }}$ $\mathrm{T}_{\text {OFF }}$ Tr Tf	50\% CTL to 90\% Current 50\% CTL to 10\% Current 10\% - 90% Current 90\% - 10\% Current	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{gathered} 480 \\ 100 \\ 470 \\ 90 \end{gathered}$	$\begin{gathered} 550 \\ 100 \\ 540 \\ 90 \end{gathered}$	$\begin{gathered} 620 \\ 100 \\ 610 \\ 90 \end{gathered}$
$\begin{aligned} \mathrm{VCC} & =+3.3 \mathrm{~V} \\ \mathrm{VDD} & =+12 \mathrm{~V} \\ \mathrm{I}_{\text {SERIES }} & =50 \mathrm{~mA} \\ \mathrm{I}_{\text {SHUNT }} & =35 \mathrm{~mA} \end{aligned}$	$\begin{gathered} \text { TX Series Diode } \\ \text { Ton } \\ \mathrm{T}_{\mathrm{OFF}} \\ \mathrm{Tr} \\ \mathrm{Tf} \end{gathered}$	$\begin{gathered} 50 \% \text { CTL to } 90 \% \text { RF } \\ 50 \% \text { CTL to } 10 \% \text { RF } \\ 10 \%-90 \% \mathrm{RF} \\ 90 \%-10 \% \mathrm{RF} \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & 460 \\ & 630 \\ & 280 \\ & 400 \end{aligned}$	$\begin{aligned} & 620 \\ & 770 \\ & 300 \\ & 350 \end{aligned}$	$\begin{aligned} & 820 \\ & 900 \\ & 340 \\ & 320 \end{aligned}$
	RX Series Diode Ton $_{\text {on }}$ Toff $^{\text {Tr }}$ Tr Tf	$\begin{gathered} 50 \% \text { CTL to } 90 \% \text { RF } \\ 50 \% \text { CTL to } 10 \% \text { RF } \\ 10 \%-90 \% \mathrm{RF} \\ 90 \%-10 \% \mathrm{RF} \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & 630 \\ & 470 \\ & 400 \\ & 280 \end{aligned}$	$\begin{aligned} & 880 \\ & 550 \\ & 450 \\ & 200 \end{aligned}$	$\begin{aligned} & 1200 \\ & 650 \\ & 550 \\ & 200 \end{aligned}$
	RX Shunt Diode Ton $\mathrm{T}_{\text {of }}$ Tr Tf	50\% CTL to 90\% Current 50\% CTL to 10\% Current 10\% - 90% Current 90\% - 10\% Current	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{gathered} 860 \\ 100 \\ 850 \\ 90 \end{gathered}$	$\begin{gathered} 850 \\ 100 \\ 840 \\ 90 \end{gathered}$	$\begin{gathered} 900 \\ 100 \\ 880 \\ 90 \end{gathered}$

7. Switching parameters were measured with a $10 \mathrm{dBm}, 2 \mathrm{GHz}$ RF input.

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, is considering for development. Performance is based on target specification
and/or prototype measurements. Commitment to develop is not guaranteed.
PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology
Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400
- India Tel: +91.80.4155721 - China Tel: +86.21.2407.1588

Visit www.macomtech.com for additional data sheets and product information.
M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Driver and SPDT Schematic for 2 GHz Applciations ${ }^{8,9,10,11,12,13,14}$

8. Forward Bias Diode Voltage: $\Delta \mathrm{Vf}$ is $\sim 0.9 \mathrm{~V} @ 22 \mathrm{~mA} ; \Delta \mathrm{Vf}$ is $\sim 1.0 \mathrm{~V} @ 35 \mathrm{~mA}$
9. R 1 is calculated by $(\mathrm{VCC}-\Delta \mathrm{Vf}) / \mathrm{I}_{\text {series }}-22 \Omega$, where $\mathrm{I}_{\text {series }}$ is the desired forward bias current for the series diodes. For 20 mA load current, R1 $=178 \Omega @$ VCC $=5.0 \mathrm{~V}$ and $93 \Omega @ \mathrm{VCC}=3.3 \mathrm{~V}$. For 50 mA load current, R1 $=57.6 \Omega @ \mathrm{VCC}=5.0 \mathrm{~V}$ and $24 \Omega @ \mathrm{VCC}=$ 3.3V.
10. $R 2$ is calculated by (VDD $-\Delta \mathrm{Vf}$) / $I_{\text {shunt }}$, where $I_{\text {shunt }}$ is the desired forward bias current for the shunt diode. The power rating is calculated by $I_{\text {shunt }} \times(V D D-\Delta V f)$. For $28 V$ VDD and 20 mA of $\mathrm{I}_{\text {shunt }}, \mathrm{R} 2$ should use a $1 \mathrm{~W}, 1.3 \mathrm{k}$ ohm resistor.
11. C 8 is already built-in for M/A-COM MASW-000834-13560T switch.
12. The current through the back-biased diodes will be the leakage current for the diodes
13. C1-C7, L1-L4, R1, R2, and the switch are discrete components that should be installed on the user's board. It is recommended that Coilcraft 0603CS-27NXJLW or equivalent be used for L1-L4 at 2 GHz . For other frequency band, C1-C3 and L1-L4 should be adjusted.
14. The switching speed will be affected by the value of VCC, VDD, C6, C7, the size of the PIN diodes, and the forward bias currents. Use higher VCC and VDD, and lower forward bias currents for faster switching.

- North America Tel: 800.366.2266 - Europe Tel: +353.21.244.6400
- India Tel: +91.80.4155721 - China Tel: +86.21.2407.1588

Visit www.macomtech.com for additional data sheets and product information.
M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Lead-Free Land Grid Array, 0.64 in x 0.84 in †

${ }^{\dagger}$ Reference Application Note M538 for lead-free solder reflow recommendations.
Meets JEDEC moisture sensitivity level 3 requirements.

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.
PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology
Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400
- India Tel: +91.80.4155721 - China Tel: +86.21.2407.1588 Visit ww.macomtech.com for additional data sheets and product information.

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

