

Single Driver for GaAs FET Switches and Attenuators

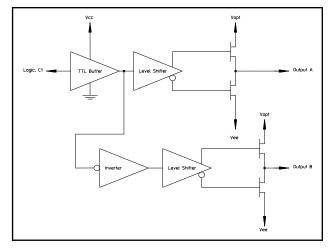
Rev. V5

Features

- High Speed CMOS Technology •
- Single Channel
- Positive Voltage Control
- Low Power Dissipation
- Low Cost Plastic SOIC-8 Package
- 100% Matte Tin Plating over Copper .
- Halogen-Free "Green" Mold Compound
- 260°C Reflow Compatible
- MADRCC0006 is RoHS* Compliant Version of SWD-109

Description

The MADRCC0006 is a single channel driver used to translate TTL control inputs into gate control voltages for GaAs FET microwave switches and attenuators. High speed analog CMOS technology is utilized to achieve low power dissipation at moderate to high speeds, encompassing most microwave switching applications. The output HIGH level is optionally 0 to +2.0V (relative to GND) to optimize the intermodulation products of the control devices at low frequencies.


Ordering Information¹

Part Number	Package
MADRCC0006	SOIC-8
MADRCC0006TR	1000 piece reel of SOIC-8
MADR-0009151-000DIE	Die ²

Reference Application Note M513 for reel size 1. information.

2. Die sales are available in waffle packs in increments of 100 pieces.

Functional Schematic

Pin Configuration³

Pin No.	Function
1	Output A
2	GND
3	Vcc
4	C1, Logic
5	Vee
6	Vopt
7	GND
8	Output B

3. The bottom of the die should be isolated for part number MADR-009151-000DIE.

* Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.

1

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266 Europe Tel: +353.21.244.6400 • India Tel: +91.80.4155721 • China Tel: +86.21.2407.1588
- Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Single Driver for GaAs FET Switches and Attenuators

Rev. V5

Guaranteed Operating Ranges

Symbol	Parameter ⁴	Unit	Min.	Тур.	Max.
V _{cc}	Positive DC Supply Voltage	V	4.5	5.0	5.5
V _{EE}	Negative DC Supply Voltage	V	-8.5	-5.0	-4.5
V _{OPT} ⁵	Optional DC Output Supply Voltage	V	0	1.0	2.0
V _{OPT} -V _{EE}	Negative Supply Voltage Range	egative Supply Voltage Range V 4.5		6.5	11.0
V _{CC} -V _{EE}	Positive to negative Supply Range	to negative Supply Range V 9.0 10.0		14.0	
T _A	Operating Ambient temperature	erating Ambient temperature °C -40 +25		+85	
I _{ОН}	DC Output Current - High	Output Current - High mA — —		-1.0	
I _{OL}	DC Output Current - Low	t - Low mA — — 1		1.0	
T _{rise} , T _{fall}	Maximum Input Rise or Fall Time	ns	—	-	500

4. All voltages are relative to GND.

5. V_{OPT} is grounded for most applications. To improve the intermodulation performance and the 1 dB compression point of GaAs control devices at low frequencies, V_{OPT} can be increased to between 1.0 and 2.0V. The nonlinear characteristics of the GaAs control devices will approximate performance at 500 MHz. It should be noted that the control current is on the GaAs MMICs will increase when positive controls are applied.

DC Characteristics over Guaranteed Operating Range

Symbol	Parameter	Test Conditions		Units	Min.	Тур.	Max.
V _{IH}	Input High Voltage	Guaranteed High Input Voltage		V	2.0	_	_
VIL	Input Low Voltage	Guaranteed Low Input Voltage		V	—	—	0.8
V _{OH}	Output High Voltage	I _{OH} = -1 mA	$V_{EE} = Max$	V	V _{OPT} -0.1	—	_
V _{OL}	Output Low Voltage	I _{OL} = 1 mA	$V_{EE} = Max$	V	—	—	V _{EE} +0.1
l _{iN}	Input Leakage Current	$V_{IN} = V_{CC} \text{ or } GND$	$V_{EE} = Min$	μA	—	.01	10
Icc	Quiescent Supply Current	V _{CC} = Max V _{OPT} = Min or Max	$V_{EE} = Min$ $V_{IN} = V_{CC}$ or GND	μA	—	—	100
ΔI_{CC}	Additional Supply Current, per TTL Input pin	V _{CC} = Max	$V_{IN} = V_{CC} - 2.1 V$	mA	_	_	1.0

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Silicon Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

2

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology

Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

Truth Table

Input	Outputs		
C1	A B		
Logic "0"	V _{EE}	V _{OPT}	
Logic "1"	V _{OPT}	V _{EE}	

North America Tel: 800.366.2266
 Europe Tel: +353.21.244.6400
 India Tel: +91.80.4155721
 China Tel: +86.21.2407.1588

Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Single Driver for GaAs FET Switches and Attenuators

Rev. V5

AC Characteristics Over Guaranteed Operating Range⁶

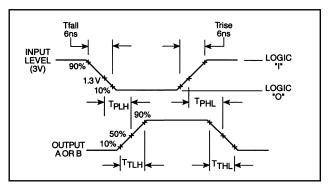
Symbol	Parameter	-55 to +25°C	<u><</u> +85°C	<u><</u> +125°C	Unit
T _{PLH}	Propagation Delay	22	25	30	ns
T _{PHL}	Propagation Delay	22	25	30	ns
T _{TLH}	Output Rising Transition Time	9.0	9.0	9.0	ns
T _{THL}	Output Falling Transition Time	8.0	8.0	8.0	ns
T _{skew}	Delay Skew, Output A to Output B	4.0	4.0	4.0	ns
C _{IN}	Input Capacitance	10	10	10	pF
C _{PDC}	Power Dissipation Capacitance ⁷	10	10	10	pF
C _{PDE}	Power Dissipation Capacitance ⁷	140	140	140	pF

6. $V_{CC} = 4.5V$, $V_{OPT} - V_{EE} = min \text{ or max}$, $V_{OPT} = 0V$, $C_L = 25 \text{ pF}$, Trise, Tfall = 6ns. These conditions represent the worst case for slow delays. 7. Total Power Dissipation is calculated by the following formula: PD = $V_{CC} {}^2 fC {}_{PDC} + (V_{OPT} - V_{EE}) {}^2 fC_{PDE}$

Symbol	Parameter	Min	Max	Unit
V _{cc}	Positive DC Supply Voltage	-0.5	7.0	V
V_{EE}	Negative DC Supply Voltage	-9.0	0.5	V
V _{OPT}	Optional DC Output Supply Voltage	-0.5	Vcc +0.5	V
V _{OPT} -V _{EE}	Output to Negative Supply Voltage Range			V
V_{CC} - V_{EE}	Positive to Negative Supply Voltage Range -0.5		14.0	V
VI	DC Input Voltage	-0.5	V _{CC} +0.5	V
I ₁	DC Input Current	-25	25	mA
Vo	DC Output Voltage	V _{EE} – 0.5	V _{ОРТ} +0.5	V
P _D ¹¹	Power Dissipation in Still Air		500	mW
Vo	DC Output Current -2		25	mA
T _{STG}	Storage Temperature	-65	150	°C

Absolute Maximum Ratings^{8,9,10}

8. All voltages are referenced to GND. All inputs and outputs incorporate latch-up protection structures.


- 9. Exceeding any one or combination of these limits may cause permanent damage to this device.
- M/A-COM does not recommend sustained operation near these survivability limits.
- 11. Derate -7 mW/°C from 65°C to 85°C.

3

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology

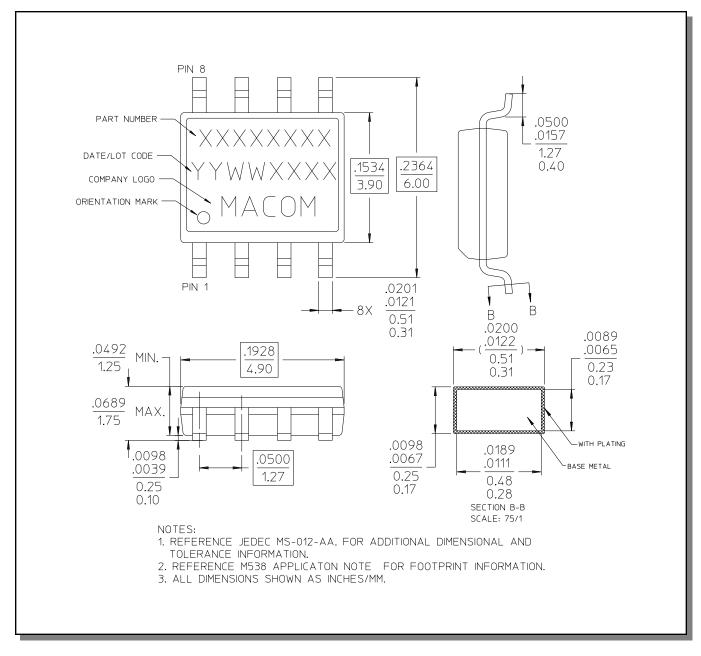
Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

Switching Waveforms

• North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400

• India Tel: +91.80.4155721 • China Tel: +86.21.2407.1588

Visit www.macomtech.com for additional data sheets and product information.


M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

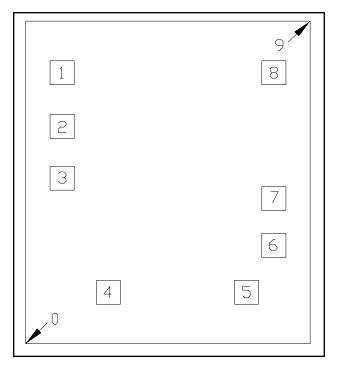
Single Driver for GaAs FET Switches and Attenuators

Rev. V5

Lead-Free, SOIC-8[†]

- [†] Reference Application Note M538 for lead-free solder reflow recommendations.
- ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY:** Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are
- North America Tel: 800.366.2266
 Europe Tel: +353.21.244.6400
 India Tel: +91.80.4155721
 China Tel: +86.21.2407.1588
- Visit www.macomtech.com for additional data sheets and product information.

Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. *M/A-CC* commitment to produce in volume is not guaranteed.


4

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Single Driver for GaAs FET Switches and Attenuators

Outline Drawing

Pad Configuration^{12,13} Die Size: 1080 x 1240 µm (nominal)

Pad No.	X (µm) nominal	Y (µm) nominal	Pad Size (µm)
0	0	0	Lower left edge of die
1	138	1042	92 x 92
2	138	835.5	92 x 92
3	138	636.75	92 x 92
4	313.75	198	92 x 92
5	838.5	198	92 x 92
6	942	378	92 x 92
7	942	558	92 x 92
8	942	1042	92 x 92
9	1080	1240	Upper right edge of die

12. All X,Y dimensions are at bond pad center.

13. Die thickness is 9.5 mils.

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed. M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macomtech.com for additional data sheets and product information.

changes to the product(s) or information contained herein without notice.