

MDS150

150 Watts, 50 Volts, Pulsed Avionics 1030 - 1090 MHz

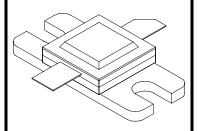
GENERAL DESCRIPTION

The MDS150 is a high power COMMON BASE bipolar transistor. It is designed for MODE-S systems in the 1030 - 1090 MHz frequency band. The transistor includes input prematch for broadband performance. The device has gold thin-film metallization and diffused ballasting in a hermetically sealed package for proven highest MTTF.

CASE OUTLINE 55AW Style 1

ABSOLUTE MAXIMUM RATINGS

Maximum Power Dissipation


Device Dissipation @25°C¹ 350 W

Maximum Voltage and Current

Collector to Emitter Voltage (BV $_{ces}$) 60 V Emitter to Base Voltage (BV $_{ebo}$) 3.5 V Peak Collector Current (I $_c$) 4 A

Maximum Temperatures

Storage Temperature $-65 \text{ to } +150 \text{ }^{\circ}\text{C}$ Operating Junction Temperature $+200 \text{ }^{\circ}\text{C}$

ELECTRICAL CHARACTERISTICS @ 25°C

SYMBOL	CHARACTERISTICS	TEST CONDITIONS	MIN	TYP	MAX	UNITS
P _{out}	Power Out	F = 1030, 1090 MHz	150			W
P_{in}	Power Input	Vcc = 50 Volts			20	W
P_{g}	Power Gain	PW = Note 2	10			dB
η_c	Collector Efficiency	DF = Note 2		34		%
VSWR ¹	Load Mismatch Tolerance				3:1	
Pd^1	Pulse Droop				0.5	dB
Trise ¹	Rise Time				100	nSec

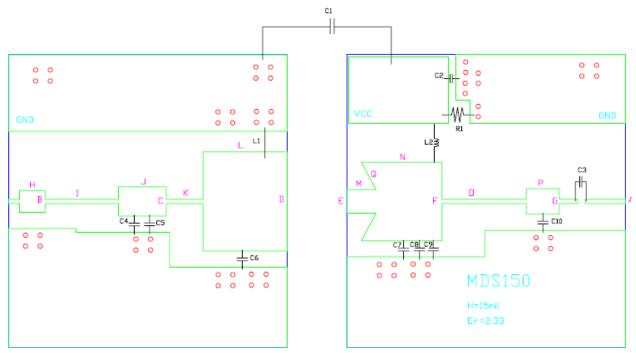
FUNCTIONAL CHARACTERISTICS @ 25°C

$\mathrm{BV}_{\mathrm{ebo}}$	Emitter to Base Breakdown	Ie = 5 mA	3.5		V
BV_{ces}	Collector to Emitter Breakdown	Ic = 25 mA	60		V
$\mathrm{BV}_{\mathrm{cbo}}$	Collector to Base Breakdown	Ic = 25 mA	60		V
h_{FE}	DC – Current Gain	Vce = 5V, $Ic = 500 mA$	20		
θjc^1	Thermal Resistance			0.5	°C/W

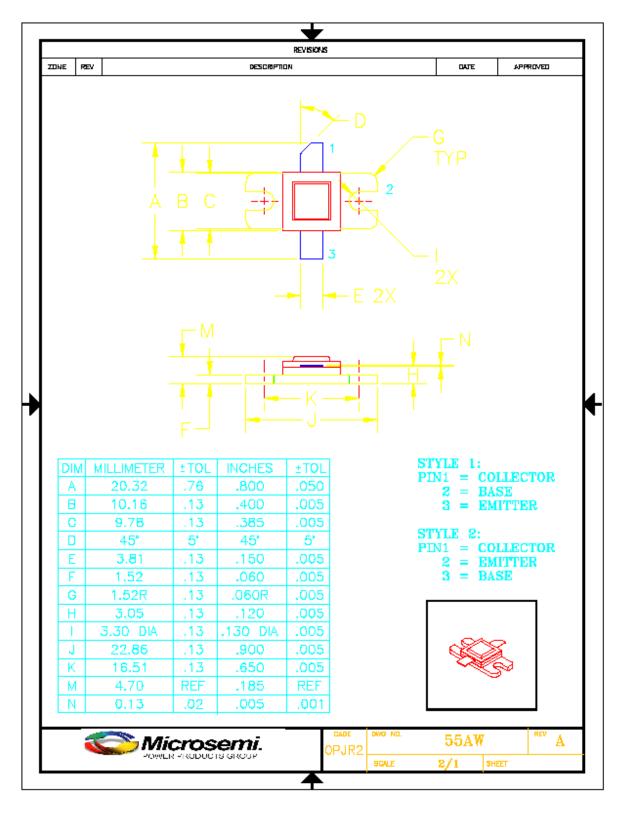
NOTE 1: AT RATED OUTPUT POWER AND PULSE CONDITIONS NOTE 2: Burst: 0.5uS ON, 0.5uS OFF x 120, repeated every 6.4mS

Initial Release - August 2007 Rev. A

Microsemi reserves the right to change, without notice, the specifications and information contained herein. Visit our web site at www.microsemi.com or contact our factory direct.



TEST FIXTURE LAYOUT AND SCHEMATIC


COMPONENTS

CIMPLINENTS
C1=2204F electrolytic cap, 63V
C2=100pf ATC Chip
C3=47pF ATC Chip
C4=1.3pF ATC Chip
C5=C7=C9=ipF ATC Chip
C6=3.5pF ATC Chip
C6=3.5pF ATC Chip
C10=1.5pF ATC Chip
C10=1.5pF ATC Chip
C10=1.5pF ATC Chip
C1=#21AVGj Length=1'
L2=#21AVGj 6 turn; I.D.=0.1'
R1=22kClinn

Microsemi reserves the right to change, without notice, the specifications and information contained herein. Visit our web site at www.microsemi.com or contact our factory direct.

Microsemi reserves the right to change, without notice, the specifications and information contained herein. Visit our web site at www.microsemi.com or contact our factory direct.