## Typical Applications

- 3V CDMA/FM Cellular Systems
- Supports Dual-Mode AMPS/CDMA
- Supports Dual-Mode TACS/CDMA
- General Purpose Linear IF Amplifier
- Portable Battery-Powered Equipment
- Commercial and Consumer Systems


## Product Description

The RF2619 is a complete AGC amplifier designed for the transmit section of 3 V dual-mode CDMA/FM cellular applications. It is designed to amplify IF signals while providing more than 84 dB of gain control range. Noise Figure, IP3, and other specifications are designed to be compatible with the IS-95 Interim Standard for CDMA cellular communications. This circuit is designed as part of the RFMD CDMA Chip Set, consisting of this Transmit IF AGC Amp, a Transmit Upconverter, a Receive LNA/Mixer, and a Receive IF AGC Amp. The IC is manufactured on an advanced high frequency Silicon Bipolar process and is packaged in a standard miniature 16-lead plastic SSOP package.

## Optimum Technology Matching ${ }^{\circledR}$ Applied $\begin{array}{lll}\square \text { Si BJT } & \square \text { GaAs HBT } & \square \text { GaAs MESFET } \\ \square \text { Si Bi-CMOS } & \square \text { SiGe HBT } & \square \text { Si CMOS }\end{array}$



Functional Block Diagram


## NOTES:

1. Shaded lead is Pin 1.
2. All dimensions are excluding mold flash
3. Lead coplanarity - 0.005 with respect to datum " $A$ ".

Package Style: SSOP-16

## Features

- Supports Dual Mode Operation
- -48 dB to +42 dB Gain Control Range
- Single 3V Power Supply
- Monolithic Construction
- 12 MHz to 175 MHz Operation
- Miniature Surface Mount Package


## Ordering Information

| RF2619 | 3V CDMA/FM Transmit AGC Amplifier |
| :--- | :--- |
| RF2619 PCBA | Fully Assembled Evaluation Board |

RF2619

Absolute Maximum Ratings

| Parameter | Rating | Unit |
| :--- | :---: | :---: |
| Supply Voltage | -0.5 to +7.0 | $\mathrm{~V}_{\mathrm{DC}}$ |
| Control Voltage | -0.5 to +5.0 | V |
| Input Power Levels | +10 | dBm |
| Operating Ambient Temperature | -40 to +85 | ${ }^{\circ} \mathrm{C}$ |
| Storage Temperature | -40 to +150 | ${ }^{\circ} \mathrm{C}$ |



RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does not assume responsibility for the use of the described product(s).

| Parameter | Specification |  |  | Unit | Condition |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Min. | Typ. | Max. |  |  |
| Overall |  |  |  |  | $\mathrm{T}=25^{\circ} \mathrm{C}, 130 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$, Pin $=-$ $40 \mathrm{dBm}, Z_{S}=1 \mathrm{k} \Omega, Z_{L}=1 \mathrm{k} \Omega, 1 \mathrm{k} \Omega$ External Output Terminating Resistor (Effective $Z_{L}=500 \Omega$ ) (See Application Example) |
| Frequency Range |  | 12 to 175 |  | MHz |  |
| Maximum Gain | +39 | +42 |  | dB | $\mathrm{V}_{\mathrm{GC}}=2.4 \mathrm{~V}$ |
| Minimum Gain |  | -48 | -45 | dB | $\mathrm{V}_{\mathrm{GC}}=0.3 \mathrm{~V}$ |
| Gain Slope |  | 57 |  | dB/V | Measured in 0.5 V increments |
| Gain Control Voltage Range |  | 0 to 3 |  | $\mathrm{V}_{\mathrm{DC}}$ |  |
| Gain Control Input Impedance |  | 30 |  | $\mathrm{k} \Omega$ |  |
| Noise Figure |  | 10.5 | 13 | dB | At maximum gain and 130 MHz |
| Input IP3 | -26 | -25 |  | dBm | At +10 gain and referenced to $1 \mathrm{k} \Omega$, $\mathrm{Pin}=-45 \mathrm{dBm}$ per tone |
| Input Impedance Stability (Max VSWR) | 10:1 | 1 |  | $\mathrm{k} \Omega$ | Differential <br> Spurious<-70dBm |
| Power Supply |  |  |  |  |  |
| Voltage |  | 2.7 to 3.3 |  | V |  |
| Current Consumption |  | 23 | 25 | mA | Maximum gain, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ |
| Current Consumption |  | 22 | 24 | mA | Minimum gain, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ |


| Pin | Function | Description | Interface Schematic |
| :---: | :---: | :--- | :--- | :--- |
| $\mathbf{1}$ | CDMA+ | CDMA balanced input pin. This pin is internally DC-biased and should <br> be DC-blocked if connected to a device with a DC level, other than $V_{C C}$, <br> present. A DC to connection to $V_{C C}$ is acceptable. For single-ended <br> input operation, one pin is used as an input and the other CDMA input <br> is AC-coupled to ground. The balanced input impedance is $1 \mathrm{k} \Omega$, while <br> the single-ended input impedance is $500 \Omega$. |  |
| $\mathbf{2}$ | CDMA- | Same as pin 2, except complementary input. |  |

RF2619

## Application Schematic


RF2619

## Evaluation Board Schematic

 (Download Bill of Materials from www.rfmd.com.)

## Evaluation Board Layout




## RF2619




IIP3 versus Gain
( $\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}, 130 \mathrm{MHz}$ )


RF2619 Gain versus Gain Control Voltage


IIP3 versus Gain
(Vcc=2.7 V, 130 MHz )


IIP3 versus Gain
( $\mathrm{V}_{\mathrm{cc}}=\mathbf{3 . 3} \mathrm{V}, 130 \mathrm{MHz}$ )


## RF2619




OIP3 versus Gain



Noise Figure versus Gain


