OKI Semiconductor

MSM6648

100-DOT COMMON DRIVER

GENERAL DESCRIPTION

The MSM6648 is a dot matrix LCD common driver. Fabricated in CMOS technology, the device consists of two 50-bit bidirectional shift registers, two 50-bit level shifters, and two 50-bit 4-level drivers.

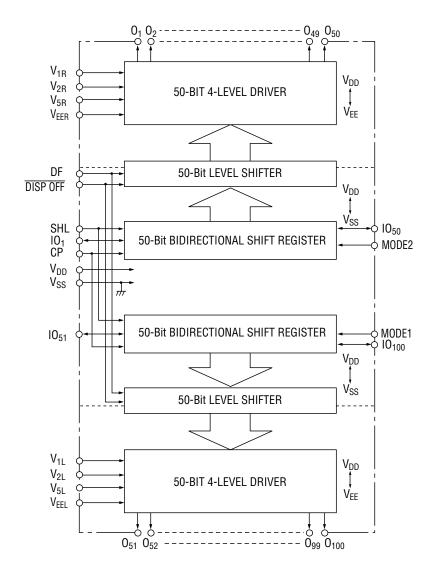
This version: Nov. 1997

Previous version: Mar. 1996

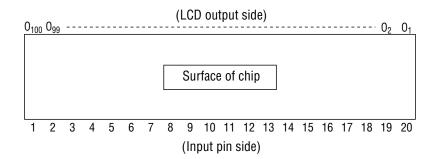
The MSM6648 is equipped with 100 LCD output pins. By connecting more than two MSM6648s in cascade, this LSI is applicable to a wide LCD panel.

FEATURES

Logic supply voltage
LCD drive voltage
Applicable LCD duty
2.7 to 5.5 V
18 to 28 V
1/64 to 1/240


- Suitable for bath panel sizes of $400 (200 \times 2)$ and $480 (240 \times 2)$ in common numbers by the use of intermediate data input and 10-bit bypass function.
- Structure:

Tape Carrier Package (TCP) mounting with 35 mm wide film


(Product name: MSM6648AV-Z-01)

Sn-plated

BLOCK DIAGRAM

PIN CONFIGURATION (TOP VIEW)

Pin	Symbol	Pin	Symbol
1	V _{1L}	11	1050
2	V _{2L}	12	V_{SS}
3	V _{5L}	13	DF
4	V _{EEL}	14	CP
5	MODE1	15	101
6	10100	16	MODE2
7	DISP OFF	17	V _{EER}
8	V_{DD}	18	V _{5R}
9	SHL	19	V _{2R}
10	10 ₅₁	20	V _{1R}

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Rating	Unit
Power Supply Voltage (1)	V_{DD}	Ta = 25°C	-0.3 to +6.5	V
Power Supply Voltage (2)	V _{DD} -V _{EE} *1	Ta = 25°C	0 to 30	V
Input Voltage	VI	Ta = 25°C	-0.3 to V _{DD} + 0.3	V
Storage Temperature	T _{STG}	_	-30 to +85	°C

*1
$$V_1 > V_2 > V_5 > V_{EE}$$
, $V_{DD} \ge V_1 > V_2 \ge V_{DD} - 10V$, $V_{EE} + 10V \ge V_5 > V_{EE}$
 $V_1 = V_{1L} = V_{1R}$, $V_2 = V_{2L} = V_{2R}$, $V_5 = V_{5L} = V_{5R}$, $V_{EE} = V_{EEL} = V_{EER}$

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Condition	Range	Unit
Power Supply Voltage (1)	V_{DD}	_	2.7 to 5.5	V
Davier Cumply Valtage (0)	\/ \/ *4	No load	14 to 28	V
Power Supply Voltage (2)	V _{DD} – V _{EE} *1	During LCD drive	18 to 28	V
Operating Temperature	Тор	_	-20 to +75	°C

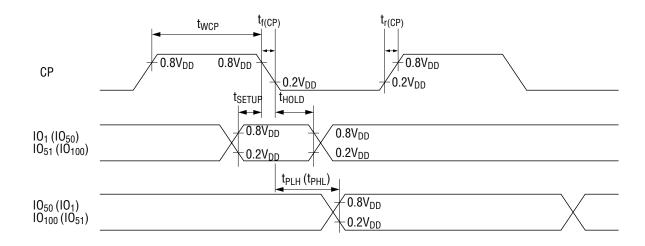
^{*1} $V_1 > V_2 > V_5 > V_{EE}$, $V_{DD} \ge V_1 > V_2 \ge V_{DD} - 7V$, $V_{EE} + 7V \ge V_5 > V_{EE}$ $V_1 = V_{1L} = V_{1R}$, $V_2 = V_{2L} = V_{2R}$, $V_5 = V_{5L} = V_{5R}$, $V_{EE} = V_{EEL} = V_{EER}$

ELECTRICAL CHARACTERISTICS

DC Characteristics

 $(V_{DD} = 2.7 \text{ to } 5.5V, Ta = -20 \text{ to } +75^{\circ}C)$

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
"H" Input Voltage	V _{IH} *1	_	0.8V _{DD}		V_{DD}	V
"L" Input Voltage	V _{IL} *1		V _{SS}		0.2V _{DD}	V
"H" Input Current	I _{IH} *1	$V_I = V_{DD}, V_{DD} = 5.5V$	_		1	μΑ
"L" Input Current	I _{IL} *1	$V_{I} = 0V, V_{DD} = 5.5V$	_	_	-1	μΑ
"H" Output Voltage	V _{0H} *2	$I_0 = -0.2$ mA, $V_{DD} = 2.7$ V	$V_{DD} - 0.4$	_	_	٧
"L" Output Voltage	V _{0L} *2	$I_0 = 0.2 \text{mA}, V_{DD} = 2.7 \text{V}$	_		0.4	V
ON Resistance	R _{ON} *4	$V_{DD} - V_{EE} = 25V,$ $ V_N - V_O = 0.25V$ *3	_	_	2	kΩ
Cupply Current	I _{SS}	$f_{CP} = 28kHz$, $V_{DD} = 3.0V$	_	_	50	^
Supply Current I_{EE} $V_{DD} - V_{EE} = 25V$, No load		$V_{DD} - V_{EE} = 25V$, No load	_	<u> </u>	300	μΑ
Input Capacitance	Cı	f = 1MHz	_	5	_	pF


^{*1} Applicable to CP, IO₁, IO₅₀, IO₁₀₀, SHL, DF, DISP OFF, MODE1, MODE2.

Switching Characteristics

 $(V_{DD} = 2.7 \text{ to } 5.5V, Ta = -20 \text{ to } +75^{\circ}C, C_{L} = 15pF)$

		,				. ,
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
"H", "L" Propagation Delay Time	t _{PLH} , t _{PHL}	_	_	_	3	μs
Clock Frequency	f _{CP}	_	_	_	1	MHz
CP Pulse Width	t _{WCP}	_	63	_	_	ns
Data Setup Time	t _{SETUP}	_	100	_	_	ns
Data Hold Time t _{HOLD}		_	100	_	_	ns
Rise/Fall Time of CP	t _{r (CP)} , t _{f (CP)}	_	_	_	20	ns

Note 1: When display is controlled by $\overline{DISPOFF}$ pin, CP rise and fall time must be $\leq 1 \, \mu s$.

^{*2} Applicable to IO₁, IO₅₀, IO₅₁, IO₁₀₀

^{*3} $V_N = V_{DD}$ to V_{EE} , $V_2 = 1/16$ ($V_{DD} - V_{EE}$), $V_5 = 15/16$ ($V_{DD} - V_{EE}$), $V_{DD} = V1$, $V_{DD} = 4.5$ V

^{*4} Applicable to O₁ to O₁₀₀

FUNCTIONAL DESCRIPTION

Pin Functional Description

• IO, IO_{50} , IO_{51} , IO_{100}

These are I/O pins for the two 50-bit bidirectional shift registers.

• SHL

This is an input pin to select the shift direction of the two 50-bit bidirectional shift registers. Set this pin to "H" or "L" level during power-on.

• MODE1, MODE2

These are input pins to select whether the two 50-bit shift registers are used as a two 50-bit application or a 40-bit and 50-bit application.

Functions of the SHL, MODE1 and MODE2 pins are shown below.

SHL	MODE1	MODE2	Scan direction	Data input pin	Scan output pin	Function
			$0_1 \rightarrow 0_{50}$	101	1050	The scan data input into the IO ₁ , and IO ₅₁ pins are
L		L	$0_{51} \rightarrow 0_{100}$	10 ₅₁	IO ₁₀₀	shifted at the falling edge of CP and are output from the IO_{50} and IO_{100} pins after the lapse of 50 clock pulses.
П			$0_{50} \rightarrow 0_1$	1050	101	The scan data input into the IO ₁₀₀ and IO ₅₀ pins are
П	H L —		$0_{100} \rightarrow 0_{51}$	10100	10 ₅₁	shifted at the falling edge of CP and are output from the 10_{51} and 10_1 pins after 50 clock pulses.
			$0_{11} \rightarrow 0_{50}$	101	10 ₅₀	This condition means a mode of bypassing between the O_1 and O_{10} pins. The scan data input into the IO_1 pin is stored in the O_{11} pin and is output from the IO_{50} pin
L,	L — H		$0_{51} \rightarrow 0_{100}$	10 ₅₁	IO ₁₀₀	after 40 clock pulses. The operation in the $\rm O_{51}$ to $\rm O_{100}$ pins is the same as that in setting SHL to "L" and MODE2 to "L".
ш	Ш		$0_{50} \rightarrow 0_1$	1050	101	This condition means a mode of bypassing between the O_{91} and O_{100} pins. The scan data input into the IO_{100} pin is stored in O_{90} and is
П	н н		$0_{90} \rightarrow 0_{51}$	10 ₁₀₀	IO ₅₁	output from the $\rm IO_{51}$ pin after 40 clock pulses. The operation in the $\rm O_{1}$ to $\rm O_{50}$ pins is the same as that in setting SHL to "H" and MODE1 to "L".

• CP

This is a clock pulse input pin for two 50-bit bi-directional shift registers. Scan data is shifted at the falling edge of a clock pulse.

• DF

This is an input pin for an LCD drive waveform AC synchronization signal, which generally inputs a frame inversion signal. See the Truth Table.

• DISP OFF

This is an input pin used to control the output pins O_1 to O_{100} . Signals on the V_1 level are output from the output pins O_1 to O_{100} , independent of the shift register data during low signal input. See the Truth Table.

• O₁ to O₁₀₀

These are 4-level driver output pins, directly corresponding to each bit of the shift register. DF signals combined to shift register data select and output any of four levels V_1 , V_2 , V_5 , and V_{EE} .

V_{DD}, V_{SS}

These are power supply pins. V_{DD} is normally 2.7 to 5.5 V. V_{SS} is a grounding pin, which is normally set to 0 V.

• V_{1L}, V_{2L}, V_{5L}, V_{EEL}, V_{1R}, V_{1R}, V_{5R}, V_{EER}

These are LCD drive bias voltage pins. The V_1 pin may be separated from the V_{DD} pin. Bias supply voltages are supplied from an external source.

Truth Table

DF	Shift register data	DISP OFF	Driver output (O ₁ to O ₁₀₀)
L	L	Н	V ₂
L	Н	Н	V _{EE}
Н	L	Н	V ₅
Н	Н	Н	V ₁
×	×	L	V ₁

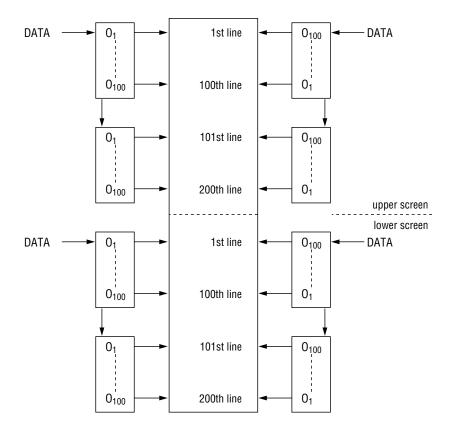
×: Don't care

NOTES ON USE

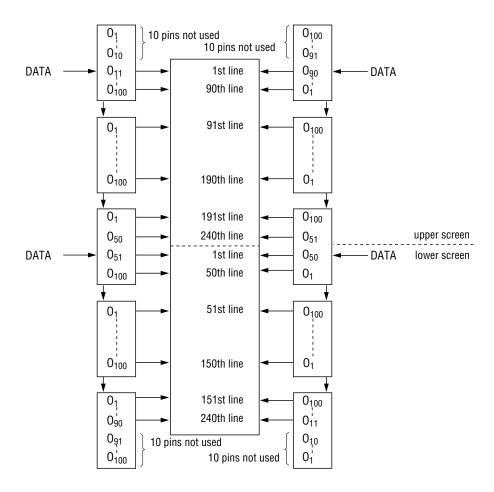
Note the following when turning power on and off:

The LCD drivers of this IC requires a high voltage. If a high voltage is applied to them with the logic power supply floating, excess current flows. This may damage the IC. Be sure to carry out the following power-on and power-off sequences.

When turning power on:


First turn on the logic circuits, then the LCD drivers, or turn on both of them at the same time. When turning power off:

First turn off the LCD drivers, then the logic circuits, or turn off both of them at the same time.


APPLICATION CIRCUITS

Example of connecting to LCD panel

In the case of 400 (200 \times 2) lines

In the case of 480 (240 \times 2) lines

