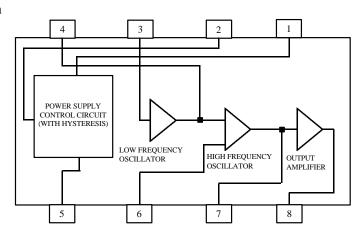

GL6851

TWO TONE RINGER

Description

The GL6851 tone ringer is a monolithic device, which incorporates two oscillators, an output amplifier and a power supply control circuit. The oscillator frequencies can be adjusted over a wide range by selection of external components. One oscillator, normally operated at a low frequency, causes the second oscillator to alternate between its nominal frequency, and a related higher frequency. The resulting output is a distinct warbling tone. The output amplifier will drive either a transformer coupled loudspeaker or a piezo-ceramic transducer. The device can be powered from a telephone line or a fixed d.c. supply. The GL6851 has provision for adjustment of the supply initiation current.


Pin Configuration

Features

- Low current consumption.
- Designed for telephone bell replacement.
- Small size MINIDIP package.
- Adjustable 2- frequency tone.
- Built-in hysteresis prevents false triggering and rotary dial CHIRPS.
- Alarms or other alerting devices.
- · Adjustable for reduced supply initiation current
- Include ESD protection.

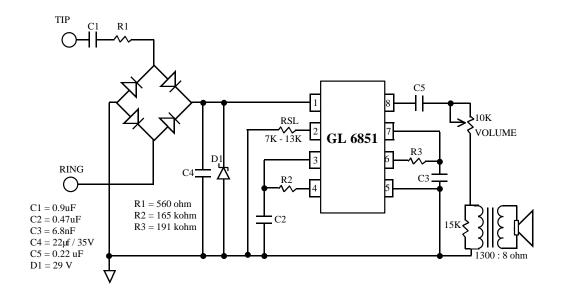
Block Diagram

Absolute Maximum Ratings (Ta = 25; É

CHARACTERISTICS	SYMBOL	VALUE	UNIT	
Supply Voltage	V_{CC}	30	V	
Power Dissipation	Po	400	mW	
Operating Temperature	Topr	-25 to 65	į É	
Storage Temperature	Tstg	-65 to 150	É	
	_			

Electrical Characteristics (Ta = 25) \not E

CHARACTERISTICS	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
Operating Supply Voltage	V_{CC}		-	-	29.0	V
Initiation Supply Voltage ¹	V_{SI}		17	19	21	V
Initiation Supply Current ¹	I_{SI}		0.9	2.0	3.7	mA
Sustaining Voltage ²	V_{SUS}		9.7	11.0	12.0	V
Sustaining Current ²	I_{SUS}		0.4	1.0	2.0	mA
Output Voltage High	V _{OH}	V _{CC} =21V, I ₈ =-10mA Pin6=6V,Pin7=GND	17	19	21	V
Output Voltage Low	V_{OL}	V _{CC} =21V, I ₈ = 10mA Pin6=GND,Pin7=6V	-	-	2	V
High Frequency 1 High Frequency 2 Low Frequency	$egin{aligned} f_{H1} & & & & & & & & & & & & & & & & & & &$	R3=191K,C3=6800pF R3=191K,C3=6800pF R2=165K,C2=0.47µF	461 576 9.0	512 640 10	563 704 11.0	Hz Hz Hz


* NOTE

- 1. Initial supply voltage (V_{SI}) is the supply voltage required to start the tone ringer oscillation.
- 2. Sustaining voltage (V_{SUS}) in the supply voltage required to maintain oscillation.

PIN DESCRIPTION

PIN NUMBER	PIN FUNCTION	DESCRIPTION
PIN 1	VCC	Operating supply D.C. voltage rectified
		from ringing signal.
PIN2	RSL	Initiation current programming Pin.
		(Must be connected)
PIN3	LOWOSC_1	Low Frequency Time Constant Adjustment pins
PIN 4	LOWOSC_2	f_L is controlled externally by R_2 and C_2
		$f_L = 1/1.289R_2C_2$
PIN 5	GND	Ground
PIN 6	HIGHOSC_1	High Frequency Time Constant Adjustment Pins
PIN 7	HIGHOSC_2	f_{H1} and f_{H2} are controlled externally by R_3 and C_3 .
		$f_{H1}=1/1.504R_3C_3$, $f_{H2}=1/1.203R_3C_3$
PIN 8	OUTPUT	Tone output

APPLICATON CIRCUIT

