DATA SHEET

BZX384 series Voltage regulator diodes

Voltage regulator diodes

FEATURES

- Total power dissipation: max. 300 mW
- Two tolerance series: $\pm 2 \%$ and approx. $\pm 5 \%$
- Working voltage range: nominal 2.4 to 75 V (E24 range)
- Non-repetitive peak reverse power dissipation: max. 40 W .

APPLICATIONS

- General regulation functions.

DESCRIPTION

Low-power voltage regulator diodes encapsulated in a very small SOD323 (SC-76) plastic SMD package.
The diodes are available in the normalized E24 $\pm 2 \%$ (BZX384-B) and approx. $\pm 5 \%$ (BZX384-C) tolerance range. The series consists of 37 types with nominal working voltages from 2.4 to 75 V .

PINNING

PIN	DESCRIPTION
1	cathode
2	anode

Fig. 1 Simplified outline (SOD323; SC-76) and symbol.

MARKING

TYPE NUMBER	MARKING	TYPE NUMBER	MARKING CODE	$\begin{aligned} & \text { TYPE } \\ & \text { NUMBER } \end{aligned}$	MARKING CODE	TYPE NUMBER	MARKING CODE

Marking codes for BZX384-B2V4 to BZX384-B75

BZX384-B2V4	K1	BZX384-B6V2	L2	BZX384-B16	M3	BZX384-B43	N3
BZX384-B2V7	K2	BZX384-B6V8	L3	BZX384-B18	M4	BZX384-B47	N4
BZX384-B3V0	K3	BZX384-B7V5	L4	BZX384-B20	M5	BZX384-B51	N5
BZX384-B3V3	K4	BZX384-B8V2	L5	BZX384-B22	M6	BZX384-B56	N6
BZX384-B3V6	K5	BZX384-B9V1	L6	BZX384-B24	M7	BZX384-B62	N7
BZX384-B3V9	K6	BZX384-B10	L7	BZX384-B27	M8	BZX384-B68	N8
BZX384-B4V3	K7	BZX384-B11	L8	BZX384-B30	M9	BZX384-B75	N9
BZX384-B4V7	K8	BZX384-B12	L9	BZX384-B33	N0		
BZX384-B5V1	K9	BZX384-B13	M1	BZX384-B36	N1		
BZX384-B5V6	L1	BZX384-B15	M2	BZX384-B39	N2		

Marking codes for BZX384-C2V4 to BZX384-C75

BZX384-C2V4	T3	BZX384-C6V2	T1	BZX384-C16	DE	BZX384-C43	DR
BZX384-C2V7	T4	BZX384-C6V8	D7	BZX384-C18	DF	BZX384-C47	DS
BZX384-C3V0	T5	BZX384-C7V5	D8	BZX384-C20	DG	BZX384-C51	DT
BZX384-C3V3	T6	BZX384-C8V2	D9	BZX384-C22	DH	BZX384-C56	DU
BZX384-C3V6	T7	BZX384-C9V1	D0	BZX384-C24	DJ	BZX384-C62	DV
BZX384-C3V9	T8	BZX384-C10	T2	BZX384-C27	DK	BZX384-C68	DW
BZX384-C4V3	T9	BZX384-C11	DA	BZX384-C30	DL	BZX384-C75	DX
BZX384-C4V7	T0	BZX384-C12	DB	BZX384-C33	DM		
BZX384-C5V1	D5	BZX384-C13	DC	BZX384-C36	DN		
BZX384-C5V6	D6	BZX384-C15	DD	BZX384-C39	DP		

ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
BZX384-B2V4 to BZX384-B75	-	plastic surface mounted package; 2 leads	SOD323
BZX384-C2V4 to BZX384-C75			

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
I_{F}	continuous forward current		-	250	mA
$\mathrm{I}_{\mathrm{ZSM}}$	non-repetitive peak reverse current	$\mathrm{t}_{\mathrm{p}}=100 \mu \mathrm{~s} ;$ square wave; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ;$ prior to surge	see Tables 1 and 2	A	
$\mathrm{P}_{\mathrm{ZSM}}$	non-repetitive peak reverse power dissipation	$\mathrm{t}_{\mathrm{p}}=100 \mu \mathrm{~s} ;$ square wave; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ;$ prior to surge	-	40	W
$\mathrm{P}_{\text {tot }}$	total power dissipation	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ;$ note 1	-	300	mW
$\mathrm{~T}_{\text {stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$
T_{j}	junction temperature		-65	+150	${ }^{\circ} \mathrm{C}$

Note

1. Refer to SOD323 standard mounting conditions.

CHARACTERISTICS

Total BZX384-B and C series
$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MAX.	UNIT
V_{F}	forward voltage	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$; see Fig. 3	0.9	V
		$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$; see Fig. 3	1.1	V
I_{R}	reverse current; BZX384-B/C2V4 BZX384-B/C2V7 BZX384-B/C3V0 BZX384-B/C3V3 BZX384-B/C3V6 BZX384-B/C3V9 BZX384-B/C4V3 BZX384-B/C4V7 BZX384-B/C5V1 BZX384-B/C5V6 BZX384-B/C6V2 $B Z X 384-B / C 6 V 8 ~$ $B Z X 384-B / C 7 V 5$ $B Z X 384-B / C 8 V 2 ~$ $B Z X 384-B / C 9 V 1 ~$ $B Z X 384-B / C 10$ $B Z X 384-B / C 11$ $B Z X 384-B / C 12$ $B Z X 384-B / C 13$ $B Z X 384-B / C 15 ~ t o ~ 75 ~$	$\begin{aligned} & \mathrm{V}_{\mathrm{R}}=1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{R}}=1 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 50 \\ & 20 \\ & 10 \\ & 5 \\ & 5 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
		$\mathrm{V}_{\mathrm{R}}=2 \mathrm{~V}$	3	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{R}}=2 \mathrm{~V}$	2	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{R}}=2 \mathrm{~V}$	1	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{R}}=4 \mathrm{~V}$	3	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{R}}=4 \mathrm{~V}$	2	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$	1	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$	700	nA
		$\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V}$	500	nA
		$\mathrm{V}_{\mathrm{R}}=7 \mathrm{~V}$	200	nA
		$\mathrm{V}_{\mathrm{R}}=8 \mathrm{~V}$	100	nA
		$\mathrm{V}_{\mathrm{R}}=8 \mathrm{~V}$	100	nA
		$\mathrm{V}_{\mathrm{R}}=8 \mathrm{~V}$	100	nA
		$\mathrm{V}_{\mathrm{R}}=0.7 \mathrm{~V}_{\mathrm{Znom}}$	50	nA

BZX- Bxxx Cxxx	WORKING VOLTAGE $\mathrm{V}_{\mathrm{Z}}(\mathrm{V})$ at $\mathrm{I}_{\text {ztest }}=5 \mathrm{~mA}$				DIFFERENTIAL RESISTANCE $r_{\text {dif }}(\Omega)$				TEMPERATURE COEFFICIENT S $\mathrm{Z}_{\mathrm{Z}}(\mathrm{mV} / \mathrm{K})$ at $I_{\text {Ztest }}=5 \mathrm{~mA}$ (see Figs 4 and 5)			$\begin{aligned} & \text { DIODE CAP. } \\ & C_{d}(\mathrm{pF}) \\ & \text { at } \mathrm{f}=1 \mathrm{MHz} ; \\ & \mathrm{V}_{\mathrm{R}}=0 \mathrm{~V} \end{aligned}$ MAX.	NON-REPETITIVE PEAK REVERSE CURRENT IZSM (A) at $t_{p}=100 \mu \mathrm{~s}$; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ MAX.
	Tol. $\pm 2 \%$ (B)		Tol. $\pm 5 \%$ (C)		at $\mathrm{I}_{\text {test }}=1 \mathrm{~mA}$		at $\mathrm{I}_{\text {test }}=5 \mathrm{~mA}$						
	MIN.	MAX.	MIN.	MAX.	TYP.	MAX.	TYP.	MAX.	MIN.	TYP.	MAX.		
2V4	2.35	2.45	2.2	2.6	275	600	70	100	-3.5	-1.6	0	450	6.0
2V7	2.65	2.75	2.5	2.9	300	600	75	100	-3.5	-2.0	0	450	6.0
3V0	2.94	3.06	2.8	3.2	325	600	80	95	-3.5	-2.1	0	450	6.0
3V3	3.23	3.37	3.1	3.5	350	600	85	95	-3.5	-2.4	0	450	6.0
3V6	3.53	3.67	3.4	3.8	375	600	85	90	-3.5	-2.4	0	450	6.0
3V9	3.82	3.98	3.7	4.1	400	600	85	90	-3.5	-2.5	0	450	6.0
4V3	4.21	4.39	4.0	4.6	410	600	80	90	-3.5	-2.5	0	450	6.0
4V7	4.61	4.79	4.4	5.0	425	500	50	80	-3.5	-1.4	0.2	300	6.0
5V1	5.00	5.20	4.8	5.4	400	480	40	60	-2.7	-0.8	1.2	300	6.0
5V6	5.49	5.71	5.2	6.0	80	400	15	40	-2.0	1.2	2.5	300	6.0
6V2	6.08	6.32	5.8	6.6	40	150	6	10	0.4	2.3	3.7	200	6.0
6V8	6.66	6.94	6.4	7.2	30	80	6	15	1.2	3.0	4.5	200	6.0
7V5	7.35	7.65	7.0	7.9	30	80	6	15	2.5	4.0	5.3	150	4.0
8V2	8.04	8.36	7.7	8.7	40	80	6	15	3.2	4.6	6.2	150	4.0
9 V 1	8.92	9.28	8.5	9.6	40	100	6	15	3.8	5.5	7.0	150	3.0
10	9.80	10.20	9.4	10.6	50	150	8	20	4.5	6.4	8.0	90	3.0
11	10.80	11.20	10.4	11.6	50	150	10	20	5.4	7.4	9.0	85	2.5
12	11.80	12.20	11.4	12.7	50	150	10	25	6.0	8.4	10.0	85	2.5
13	12.70	13.30	12.4	14.1	50	170	10	30	7.0	9.4	11.0	80	2.5
15	14.70	15.30	13.8	15.6	50	200	10	30	9.2	11.4	13.0	75	2.0
16	15.70	16.30	15.3	17.1	50	200	10	40	10.4	12.4	14.0	75	1.5
18	17.60	18.40	16.8	19.1	50	225	10	45	12.4	14.4	16.0	70	1.5
20	19.60	20.40	18.8	21.2	60	225	15	55	14.4	16.4	18.0	60	1.5
22	21.60	22.40	20.8	23.3	60	250	20	55	16.4	18.4	20.0	60	1.25
24	23.50	24.50	22.8	25.6	60	250	25	70	18.4	20.4	22.0	55	1.25

[^0]uo!peo!!!eads ponpold

BZXBxxx Cxxx	WORKING VOLTAGE $\mathrm{V}_{\mathrm{Z}}(\mathrm{V})$ at $\mathrm{I}_{\text {Zest }}=\mathbf{2 ~ m A}$				DIFFERENTIAL RESISTANCE $r_{\text {dif }}(\Omega)$				TEMPERATURE COEFFICIENT $\mathrm{S}_{\mathrm{Z}}(\mathrm{mV} / \mathrm{K})$ at $I_{\text {ztest }}=\mathbf{2 ~ m A}$ (see Figs 4 and 5)			$\begin{gathered} \text { DIODE CAP. } \\ C_{d}(p F) \\ \text { at } f=1 \mathrm{MHz} ; \\ V_{R}=0 \mathrm{~V} \end{gathered}$ MAX.	NON-REPETITIVE PEAK REVERSE CURRENT Izsm (A) at $t_{p}=100 \mu \mathrm{~s}$; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
	Tol. $\pm 2 \%$ (B)		Tol. $\pm 5 \%$ (C)		at $I_{\text {ztest }}=0.5 \mathrm{~mA}$		at $\mathrm{I}_{\text {ztest }}=2 \mathrm{~mA}$						
	MIN.	MAX.	MIN.	MAX.	TYP.	MAX.	TYP.	MAX.	MIN.	TYP.	MAX.		MAX.
27	26.50	27.50	25.1	28.9	65	300	25	80	21.4	23.4	25.3	50	1.0
30	29.40	30.60	28.0	32.0	70	300	30	80	24.4	26.6	29.4	50	1.0
33	32.30	33.70	31.0	35.0	75	325	35	80	27.4	29.7	33.4	45	0.9
36	35.30	36.70	34.0	38.0	80	350	35	90	30.4	33.0	37.4	45	0.8
39	38.20	39.80	37.0	41.0	80	350	40	130	33.4	36.4	41.2	45	0.7
43	42.10	43.90	40.0	46.0	85	375	45	150	37.6	41.2	46.6	40	0.6
47	46.10	47.90	44.0	50.0	85	375	50	170	42.0	46.1	51.8	40	0.5
51	50.00	52.00	48.0	54.0	90	400	60	180	46.6	51.0	57.2	40	0.4
56	54.90	57.10	52.0	60.0	100	425	70	200	52.2	57.0	63.8	40	0.3
62	60.80	63.20	58.0	66.0	120	450	80	215	58.8	64.4	71.6	35	0.3
68	66.60	69.40	64.0	72.0	150	475	90	240	65.6	71.7	79.8	35	0.25
75	73.50	76.50	70.0	79.0	170	500	95	255	73.4	80.2	88.6	35	0.2

Voltage regulator diodes

BZX384 series

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
$\mathrm{R}_{\mathrm{th}(\mathrm{j}-\mathrm{a})}$	thermal resistance from junction to ambient	note 1	415	K/W
$\mathrm{R}_{\mathrm{th}(\mathrm{j}-\mathrm{s})}$	thermal resistance from junction to soldering point	note 2	110	K/W

Notes

1. Device mounted on an FR4 printed-circuit board.
2. Soldering point of the cathode tab.

Voltage regulator diodes

BZX384 series

GRAPHICAL DATA

Fig. 2 Maximum permissible non-repetitive peak reverse power dissipation versus duration.

BZX384-B/C2V4 to B/C4V3.
$\mathrm{T}_{\mathrm{j}}=25$ to $150^{\circ} \mathrm{C}$.
Fig. 4 Temperature coefficient as a function of working current; typical values.

Fig. 3 Forward current as a function of forward voltage; typical values.

BZX384-B/C4V7 to B/C12.
$\mathrm{T}_{\mathrm{j}}=25$ to $150^{\circ} \mathrm{C}$.
Fig. 5 Temperature coefficient as a function of working current; typical values.

Voltage regulator diodes

PACKAGE OUTLINE

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A}	$\mathbf{A}_{\mathbf{1}}$ $\mathbf{m a x}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	\mathbf{D}	\mathbf{E}	$\mathbf{H}_{\mathbf{D}}$	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}
mm	1.1	0.05	0.40	0.25	1.8	1.35	2.7	0.45	0.25	0.2
	0.8		0.25	0.10	1.6	1.15	2.3	0.15	0.15	0.2

Note

1. The marking bar indicates the cathode

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOD323			SC-76	\square ($\begin{aligned} & -99-09-13 \\ & 03-12-17 \end{aligned}$

DATA SHEET STATUS

LEVEL	DATA SHEET STATUS ${ }^{11)}$	PRODUCT STATUS ${ }^{(2)(3)}$	DEFINITION
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

Notes

1. Please consult the most recently issued data sheet before initiating or completing a design.
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

DEFINITIONS

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition-Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes - Philips Semiconductors reserves the right to make changes in the products including circuits, standard cells, and/or software described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors - a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 402724825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any licenseunder patent- or other industrial or intellectual property rights

[^0]: งə!ルəs †8\&XZЯ

